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Abstract. We study the accuracy of data on some local topographic attributes
derived from digital elevation models (DEMs). First, we carry out a test for the
precision of four methods for calculation of partial derivatives of elevations. We
® nd that the Evans method is the most precision algorithm of this kind. Second,
we produce formulae for root mean square errors of four local topographic
variables (gradient, aspect, horizontal and vertical landsurface curvatures) , pro-
vided that these variables are evaluated with the Evans method. Third, we demon-
strate that mapping is the most convenient and pictorial way for the practical
implementation of the formulae derived. A DEM of a part of the Kursk Region
(Russia) is used as an example. We ® nd that high errors of data on local topo-
graphic variables are typical for ¯ at areas. Results of the study can be used to
improve landscape investigations with digital terrain models.

1. Introduction

Digital terrain models (DTMs) can be de® ned as digital representations of vari-
ables relating to a topographic surface, namely: digital elevation models (DEMs),
digital models of gradient (G ), aspect (A ), horizontal (kh ) and vertical (kv) landsurface
curvatures as well as other topographic attributes (Miller and Le¯ amme 1958, Doyle
1978, Burrough 1986, Felicisimo 1994 a, Shary 1995). DTMs are extensively used in
landscape investigations (Moore et al. 1991, Shary et al. 1991, Florinsky 1995).
Application of local topographic variables, such as G, A, kh and kv has attracted
considerable interest. This is due to the fact that these attributes are connected with
processes of lateral migration and accumulation of water and other substances by
gravity along the landsurface and in soil (Moore et al. 1991, Shary et al. 1991).

G is the angle between a tangent and a horizontal plane in a given point of the
landsurface. A is the angle clockwise from north to a projection of a normal vector
to a horizontal plane through a given point of the landsurface. kv is the curvature
of a normal section of the landsurface compared to a plane including a gravity
acceleration vector at a given point on the landsurface. kh is the curvature of a
normal section of the landsurface; this section is orthogonal to the section with kv

(Evans 1980, Shary 1991).
Local topographic variables can be derived from elevation (z) values in a small

neighbourhood of each point of the landsurface. z is given by z= f (x,y) where x and
y are plan Cartesian coordinates, and G, A, kh and kv are functions (§4) of the

1365± 8816/98 $12´00 Ñ 1998 Taylor & Francis Ltd.



I. V . Florinsky48

following partial derivatives (Shary 1991):

r=
d

2z

dx2, t=
d

2z

dy2, s=
d

2z

dxdy
, p=

dz

dx
and q=

dz

dy
. r, t, s, p and q

can be calculated with regular (square-gridded) DEMs by various methods
(Sharpnack and Akin 1969, Evans 1980, Horn 1981, Papo and Gelbman 1984, Ritter
1987, Zevenbergen and Thorne 1987, Skidmore 1989, Moore et al. 1993, Shary 1995).
These methods (§2) are based on approximation of diVerential operators by ® nite
diVerences (Ames 1977).

It is obvious that errors of DTMs can adversely aVect the accuracy and impartial-
ity of investigation and modelling of natural processes. So, considerable study has
focussed on aspects of DTM accuracy. For example, Carter (1988 ) discussed causes
for errors in DEMs compiled by diVerent methods. Researchers developed algorithms
for detection of errors in DEMs (Frederiksen 1981, Hannah 1981, Brown and Bara
1994, Felicisimo 1994 a, 1994 b), estimation of these errors (Ackermann 1978,
Felicisimo 1994 a, Li 1994), their visualization (Kraus 1994, Hunter and Goodchild
1995) and correction (Hannah 1981, Brown and Bara 1994, Felicisimo 1994a).
Kumler (1994) performed a detailed comparison of the accuracy of eight types of
DEMs for 25 terrain types. He demonstrated that the highest accuracy is speci® c to
regular DEMs produced by linear interpolation of z values from the strings of
digitized contours.

The accuracy of G, A and kv calculation is less well understood, while no
consideration has been given to the accuracy of kh computation. Basically, the
accuracy of digital models and maps of G, A and kv was studied by a comparison
of calculated and r̀eference’ values of these variables. For r̀eference’ data researchers
used hand measurements of G and A from topographic maps (Evans 1980, Skidmore
1989), ® eld measurements of G, A and kv (Bolstad and Stowe 1994, Giles and
Franklin 1996), G and A derived from r̀eference’ DEMs of actual surfaces (Chang
and Tsai 1991) and imaginary ones (Carter 1992, Felicisimo 1995, Hodgson 1995).
However, there is no reason to suppose that these r̀eference’ data, measurements
and computations are correct. There are grounds to think that the accuracy of data
on G, A, kh and kv cannot be determined by a comparison of calculated and r̀eference’
values (Shary, personal communication 1991). Really, a measurement accuracy can
be de® ned as a diVerence between a measured value and an actual value of a variable
(e.g., Gaidaev and Bolshakov 1969 ). However, the actual landsurface is not mathem-
atically smooth. So, it cannot have derivatives and hence G, A, kh and kv. These
variables are abstract ones, and arise only during measurements (Shary 1991). As
there are no actual values of G, A, kh and kv, the accuracy of these data cannot be
determined by a comparison of calculated and r̀eference’ values.

Moreover, this strategy can lead to some artefacts, subjective and con¯ icting
conclusions. For instance, it was found that errors of A calculation are typical for
¯ at areas (Chang and Tsai 1991, Carter 1992), while errors of G computation are
predominantly positioned on steep slopes (Chang and Tsai 1991, Sasowsky et al.
1992, Bolstad and Stowe 1994). However, Carter (1992) emerged that errors in G
and A become large in ¯ at areas. At the same time, Davis and Dozier (1990) found
that G and A errors concentrate within zones of rapid change in slope and exposure
(e.g., ridges and ravines). Evans (1980) pointed out that the accuracy of G, A, kh and
kv maps depends on the matrix step or cell size (w) of a DEM. For example, small
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steep zones can transform to broad areas marked by medium values of G with
increasing w (Chang and Tsai 1991 ). At the same time, Carter (1992) found that as
w is increased, computed values of G and A more closely correspond to their
r̀eference’ values. Moreover, upon increasing w, some changes in maps of topographic
variables can be interpreted not as a decrease in the map accuracy but as generaliza-
tion, that is, visualization of landform characteristics of other scales (Phillips 1988).

So, we believe that the accuracy of G, A, kh and kv derivation cannot be studied
adequately by a comparison of calculated and r̀eference’ values. A radically diVerent
strategy should be used. It is obvious that the accuracy of data on G, A, kh and kv

principally depends on:

Ð the accuracy of initial data, that is the DEM;
Ð precision of a calculation technique.

So, attention has to be focused on these two main factors of error generation. Thus,
Felicisimo (1995 ) found that errors of G increase with increasing root mean square
error (RMSE) of a DEM. Brown and Bara (1994) and Giles and Franklin (1996)
intimated that errors in calculations of partial derivatives of z increase with the noise
contained in the DEM. Skidmore (1989) and Hodgson (1995) compared accuracy
of diVerent methods for G and A derivation, that is calculation of p and q (§4).
Skidmore (1989 ) found that p/q algorithms using data on six points of the 3 by 3
elevation submatrix (§2) are more accurate than a p/q algorithm using data on four
points of this submatrix. At the same time, Hodgson (1995 ) argued that a four-point
algorithm is more accurate than six-point ones. Unfortunately, all these studies were
also carried out with a comparison of calculated and r̀eference’ values of topographic
variables.

It is clear that G, A, kh and kv are functions F of measured variables F=
w(x, y, ..., u) where x, y, ..., u are measured arguments. In this case, measured
arguments are r, t, s, p and q (§4). Kuryakova (1996 ) proposed that the RMSE of F
(mF ) would be appropriate to evaluate the accuracy of data on G, A, kh and kv. To
estimate mF the following formula can be applied (Gaidaev and Bolshakov 1969,
p. 129):

mF= S A dF

dxB
2

0
m2

x + A dF

dyB
2

0
m2

y + ...+ A dF

duB
2

0
m2

u (1 )

where mx , my , ..., mu are RMSE of x, y, ..., u, correspondingly. In our opinion, this
approach is best matched to the problem at hand.

Kuryakova (1996) produced equations for RMSE of A and G (mA and mG ,
correspondingly). As measured arguments, she used partial derivatives of z calculated
by the method of Evans (1980) (§2.1). Unfortunately, the development of the equation
for mG was in error. Also Kuryakova (1996) did not justify using of the Evans
method to calculate r, t, s, p and q, although these derivatives can be estimated for
other algorithms (Sharpnack and Akin 1969, Horn 1981, Papo and Gelbman 1984,
Ritter 1987, Zevenbergen and Thorne 1987, Skidmore 1989, Moore et al. 1993,
Shary 1995).

The objective of this study is to investigate the accuracy of data on G, A, kh and
kv. First, we determine the most precise method for calculation of r, t, s, p and q
using a comparison of four often-used algorithms. Second, we produce formulae for
mG , mA and RMSE of kh and kv (mkh and mkv, correspondingly), provided that G, A,
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kh and kv are evaluated with the most precise method for r, t, s, p and q calculation.
Third, we demonstrate a practical implementation of formulae for mG , mA , mkh and
mkv.

2. Four methods for calculation of r, t, s, p and q

Let us consider in details four often-used methods for calculation of r, t, s, p and
q, namely the methods of Evans (1980), Zevenbergen and Thorne (1987), Moore
et al. (1993) and Shary (1995).

2.1. T he Evans method
In the method of Evans (1980), the polynomial

z=
rx2

2
+

ty2

2
+sxy+px+qy+u (2 )

is approximated by the least squares method to the 3 by 3 altitude submatrix. Points
of the submatrix (Õ w, w, z1 ), (0, w, z2 ), (w, w, z3 ) , (Õ w, 0, z4 ), (0, 0, z5 ), (w, 0, z6 ),
( Õ w, Õ w, z7 ), (0, Õ w, z8 ) and (w, Õ w, z9 ) are measured coordinates of the land-
surface. As a result, we can estimate values of r, t, s, p and q at the point (0, 0, z5 )
by the following formulae:

r=
z1+z3+z4+z6+z7+z9 Õ 2(z2+z5+z8 )

3w2 , (3 )

r=
z1+z2+z3+z7+z8+z9 Õ 2(z4+z5+z6 )

3w2 , (4 )

s=
z3+z7 Õ z1 Õ z9

4w2 , (5 )

p=
z3+z6+z9 Õ z1 Õ z4 Õ z7

6w
, (6 )

q=
z1+z2+z3 Õ z7 Õ z8 Õ z9

6w
. (7 )

Moving the 3 by 3 submatrix along a regular DEM we can calculate values of r, t,
s, p and q for all points of the DEM, excepting boundary points. Equations (3± 7 )
were ® rst published by Pennock et al. (1987 ). Sharpnack and Akin (1969) proposed
expressions for p and q identical with equations (6 and 7).

The polynomial (equation (2)) is approximated to z values of the 3 by 3 submatrix
rather than passes exactly through these values. This leads to some smoothing of z
function within the 3 by 3 submatrix, that is, to local ® ltering of high-frequency
noise resulted from small random errors in DEM compilation (Shary 1995). This
low-pass ® ltering can provide more correct calculation of derivatives. This is because
derivatives are very responsive to high-frequency components of a signal (Pratt 1978,
Brown and Bara 1994, Giles and Franklin 1996 ). Excessive measurements are a
further merit of the Evans method: nine values of z are used to estimate six coeYcients
of the polynomial (equation (2 )). This leads to improvements in the accuracy and
tolerance of these computations (Bugaevsky, personal communication 1993).
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2.2. T he Zevenbergen and T horne method
In this method a Lagrange polynomial

z=ax2y2+bx2y+cxy2+
rx2

2
+

ty2

2
+sxy+px+qy+u (8 )

passes exactly through all points of the 3 by 3 submatrix. Zevenbergen and Thorne
(1987) anticipated that this condition may improve the calculation accuracy of
partial derivatives. However, an opposite result can be produced due to the lack of
excessive measurements, and availability of high-frequency noise of a DEM. Value
of s at the point (0, 0, z5 ) of the 3 by 3 submatrix is estimated by equation (5), while
values of r, t, p and q are evaluated by the following formulae:

r=
z4+z6 Õ 2z5

2w2 , (9 )

t=
z2+z8 Õ 2z5

2w2 , (10)

p=
z6 Õ z4

2w
, (11)

q=
z2 Õ z8

2w
. (12)

Ritter (1987 ) proposed expressions for p and q identical with equations (11 and 12).

2.3. T he Moore et al. method
In the method of Moore et al. (1993), equations (5, 11, and 12) are used to

calculate values of s, p and q, respectively, at the point (0, 0, z5 ) of the 3 by 3
submatrix, while values of r and t are calculated by the following formulae:

r=
z4+z6 Õ 2z5

w2 , (13)

t=
z2+z8 Õ 2z5

w2 . (14)

2.4. T he Shary method
Shary (1995 ) imposed the following condition: the polynomial (equation (2)) has

to pass exactly through the point (0, 0, z5 ) of the 3 by 3 submatrix, that is, u= z5 .
With this method, values of s, p and q are calculated by equations (5 ± 7 ), respectively,
while values of r and t are computed by the following formulae:

r=
z1+z3+z7+z9+3(z4+z6 ) Õ 2(z2+3z5+z8 )

5w2 , (15)

t=
z1+z3+z7+z9+3(z2+z8 ) Õ 2(z4+3z5+z6 )

5w2 . (16)
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3. Test for the precision of methods for calculation of r, t, s, p and q

r, t, s, p and q (equations (3± 7 ) (9± 16)) are functions F of measured variables.
Measured arguments are zi , i=1, ..., 9. We carry out the test for the precision of
methods for calculation of partial derivatives of z with the criterion of mF (equation
(1)) . It should be stressed that we examine the fundamental error in the algorithms
rather than an error associated with how well polynomials are used within those
methods (equations (2 and 8)) to model the real elevation distribution. This problem
is rather complicated (e.g., Lobanov and Zhurkin 1980, Carter 1988) and is outside
the scope of the present study.

Let us produce formulae of RMSE of r, t, s, p and q (mr , mt , ms , mp and mq ,
respectively) for the methods described (§2). In particular, for the Evans method

mr= S A dr

dz1B
2

0
m2

z
1
+ A dr

dz2B
2

0
m2

z
2
+ A dr

dz3B
2

0
m2

z
3
+ ...+ A dr

dz9B
2

0
m2

z
9

(17)

where mz
1
, mz

2
, mz

3
, ..., mz

g
are RMSE of z1 , z2 , z3 , ..., z9 . In the strict sense, mzi=

w(x,y), x and y are planimetric coordinates. mzi depends on geomorphic conditions,
methods of compilation and interpolation of a DEM (Hunter and Goodchild 1995 ).
Ackermann (1978) and Li (1994 ) proposed formulae for mzi estimation. According
to these expressions, mzi is a function of G. However, it is not pro® table to use
formulae of this kind because the accuracy of calculations of G depends on mzi too
(Felicisimo 1995).

At the same time, for a DEM produced by digitizing contours

mz i=const =B h (18)

where B= 0 1́6± 0 3́3, h is a contour interval (Li 1994). The factor B depends on
geomorphic conditions, and the extent to which additional feature-speci® c data (i.e.,
peaks, pits, watersheds, thalvegs) are incorporated into the DEM. So, let us consider
mz

1
=mz

2
= ...=mz

9
=mz . Substituting mz into equation (17) gives:

mr=mz S A dr

dz1B
2

0
+ A dr

dz2B
2

0
+ A dr

dz3B
2

0
+...+ A dr

dz9B
2

0
. (19)

On diVerentiation and simple algebraic operations, we obtain an expression of mr

for the Evans method (table 1). Rearrangements can be dropped. In a similar manner,

Table 1. mr , mt , ms , mp and mq for diVerent methods.

Method mr=mt ms mp=mq

The Evans method 1 4́1mz

w2

0 5́mz

w2

0 4́1mz

w

The Zevenbergen and Thorne method 1 2́2mz

w2

0 5́mz

w2

0 7́1mz

w

The Moore et al. method 2 4́5mz

w2

0 5́mz

w2

0 7́1mz

w

The Shary method 1 6́2mz

w2

0 5́mz

w2

0 4́1mz

w
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we derive the required expressions of mr , mt , ms , mp and mq for all methods tested
(table 1).

mr equals mt , and mp equals mq for all methods (table 1). Values of RMSE
obtained are in direct proportion to mz . mp and mq are in inverse proportion to w,
while mr , mt and ms are in inverse proportion to w2 (table 1). So, second partial
derivatives are more responsive than ® rst partial derivatives to changes in w. It
should be emphasized that with low values of w, mr , mt and ms values far exceed mp

and mq ones, while with high values of w, mp and mq values far exceed mr , mt and ms

ones (table 2).
Equation (5) is used to estimate s values by all methods tested (§2). So, the

precision of the methods is dictated by mr , mt , mp and mq . Comparative analysis of
the formulae obtained (table 1) demonstrated that the Moore et al. method is marked
by the highest values of mr and mt . The Zevenbergen and Thorne method and the
Moore et al. method are equal in mp and mq . Also, the Evans method and the Shary
method are equal in mp and mq . However, r and t calculation is more accurate with
the Evans method than with the Shary method. r and t are further precisely evaluated
by the Zevenbergen and Thorne method. At the same time, p and q calculation is
more accurate with the Evans method than with the Zevenbergen and Thorne
method. Considering these facts and drawbacks of the Zevenbergen and Thorne
method (§2.2), we can conclude that the Evans method is the most precise algorithm
for estimation of r, t, s, p and q. Note, that although the Evans method is least
aVected by elevation errors, that does not mean that the Evans polynomial (equation
(2)) best represent elevation reality.

It should be noticed that our results (table 1) conform with conclusions of
Skidmore (1989) rather than with results of Hodgson (1995): p and q derivation is
more accurate with the Evans and the Shary methods (six-point algorithms) than
with the Zevenbergen and Thorne and the Moore et al. methods (four-point
algorithms).

4. Development of mG , mA, m kh and m kv formulae

G, A, kh and kv can be calculated with the following formulae (Shary 1991):

G=arctg ( Ó p2+q2) , (20)

A=arctg A q

pB , (21)

kh= Õ
q2r Õ 2pqs+p2t

(p2+q2 ) Ó 1+p2+q2 , (22)

kv= Õ
p2r+2pqs+q2t

( p2+q2 ) Ó (1+p2+q2 )3
. (23)

Table 2. Relations between w and mr , mt , ms , mp and mq for the Evans method, mz=1 m.

w, m 0 1́ 1 10 100 1000

mr=mt 141 1 4́1 0 0́141 0 0́00141 0 0́0000141
ms 50 0 5́ 0 0́05 0 0́0005 0 0́000005
mp=mq 4 1́ 0 4́1 0 0́41 0 0́041 0 0́0041
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The following question arises: How we can use equations (24± 27) in actual
practice? Mapping is a convenient and pictorial strategy to visualize propagation of
errors in spatial modelling (Heuvelink et al. 1989, Kraus 1994, Hunter and Goodchild
1995). So, equations (24± 27) would be appropriate for use in mapping of mG , mA ,
mkh and mkv.

5. Mapping of mG , m A, m kh and m k v

5.1. Materials and methods
We used a DEM of a territory adjoining the town of L’gov (Kursk Region,

Russia) ( ® gure 1) to demonstrate the possibilities of mapping of mG , mA , mkh and
mkv. The study area measures 68 km by 48 km. The irregular DEM of the study site
was compiled by digitizing contours and speci® c features of relief (i.e., some peaks,
watersheds and thalvegs) from a 15200 000 topographic map (general headquarters

1981). The irregular DEM includes about 47 000 points. The regular DEM (® gure 1)
was generated by the irregular DEM interpolation using the weighted average
method (Schut 1976). We applied a matrix step of 180 m. We calculated digital
models of G ( ® gure 2(a)), A ( ® gure 2(c)) , kh ( ® gure 2(e)) and kv ( ® gure 2(g)) by the
method of Evans (1980) with w of 1500 m.

Contour interval is 20 m within the topographic map used. We set the factor B=
0 2́5, since some speci® c features of relief were digitized. According to equation (18),
we applied mz=5 m in calculation and mapping of mG ( ® gure 2(b)), mA ( ® gure 2(d )),
mkh ( ® gure 2(f )) and mkv ( ® gure 2(h)).

Visualization of DTMs marked by low resolution, as a rule, leads to production
of poorly readable maps (e.g., Papo and Gelbman 1984). To improve visual percep-
tion we used a smooth interpolation (Schut 1976) of G, mG , kh , mkh, kv and mkv in
mapping ( ® gures 2(a, b, e ± h)). A values ( ® gure 2(c)) were not smoothed due to the
particular feature of A (see its de® nition in §1). Interpolation of A can lead to some
artefacts. For example, assume that two neighbouring points I and II are marked

Figure 1. Elevation map of the part of the Kursk Region (Russia).
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Table 3. Pairwise coeYcients of correlations between local topographic variables and their
RMSE (in brackets are signi® cance levels), for the part of the Kursk Region.

z G A kh k v

mG Õ 0 0́3 (0 3́4) Õ 0 9́5 (0 0́0) Õ 0 0́1 (0 6́6) Õ 0 1́6 (0 0́0) Õ 0 0́9 (0 0́0)
mA Õ 0 0́7 (0 0́1) Õ 0 1́5 (0 0́0) Õ 0 0́5 (0 0́7) 0 0́1 (0 6́1) Õ 0 0́3 (0 2́9)
mkh Õ 0 0́1 (0 6́9) Õ 0 1́6 (0 0́0) Õ 0 0́6 (0 0́4) Õ 0 1́8 (0 0́0) Õ 0 0́8 (0 0́0)
mk v Õ 0 0́3 (0 2́4) Õ 0 0́9 (0 0́0) Õ 0 0́4 (0 1́5) Õ 0 0́9 (0 0́0) Õ 0 4́7 (0 0́0)

by A values of 10 and 385 degrees, correspondingly. Upon interpolating, A takes
values 10± 385 degrees at points located between points I and II. So, we obtain
the artefact, that is, alternating small zones of north-east, east, south-east, south,
south-west, west and north-west aspects. Also, we did not interpolate mA values
( ® gure 2(d)) for convenient comparison of A and mA maps ( ® gures 2(c, d)).

To estimate quantitatively spatial relations between topographic variables and
RMSE of their calculation, we carried out a linear correlative analysis between mG ,
mA , mkh, mkv and z, G, A, kh , kv. We used a 1364-point sample. The sample step was
1500 m. The results of correlative analysis are shown in table 3.

We applied the software landlord 2.1 (Florinsky et al. 1995) for the irregular
DEM interpolation, calculation and mapping of topographical variables and
their RMSE ( ® gures 1, 2). Correlative analysis was carried out by the software
statgraphics 2.6.

5.2. Results and discussion
Maps of mG , mA , mkh and mkv obtained ( ® gures 2(b, d, f, h)) clearly demonstrate

the spatial distribution of these RMSE within the study site. Analysis of the maps
( ® gure 2) and correlation coeYcients (table 3) allowed us to determine some regularit-
ies for the spatial distribution of mG , mA , mkh and mkv. An inverse dependence of mG

on G is the most conspicuous association (table 3, ® gures 2(a, b)) . This result ® ts
well with the conclusion about G errors obtained by Carter (1992) (§1). Maximum
values of mA are also observed within ¯ at areas ( ® gures 2(a, d ) table 3). In some
cases, mA ranges up to tens of degrees there ( ® gures 2(a, d )) . This result correlates
with the inferences about A errors obtained by Chang and Tsai (1991) and Carter
(1992) (§1). However, mG and mA values are generally negligible ( ® gures 2 (b, d )).
High values of mkh and mkv are typical for ¯ at areas too ( ® gures 2(a, f, h)). In addition,
there is a strong negative correlation between mkv and kv, and small inverse dependen-
cies of mkh on kh and G ( table 3). It must be emphasized that values of mkh and mk v

can be in excess of maximum values of kh and kv, respectively, within some ¯ at areas
( ® gures 2(a, e ± h)). A does not eVect propagation of mG , mA , mkh and mkv (table 3).
Notice that the results of correlative analysis (table 3) describe trends of relations
between topographic variables and their RMSE. It is likely that these relations can
depend on geomorphic conditions also.

The regularities of spatial distribution of mG , mA , mkh and mkv should be taken
into account in landscape investigations with DTMs. Researchers have to treat data
on local topographic variables (notably kh and kv) with criticism, especially in studies
of plain terrains. Data on mG , mA , mkh and mkv can be used:

Ð to account for a spatial distribution of mF in analysis and interpretation of F
(Carter 1992);
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Ð to re® ne a DEM within areas marked by high values of mF , and then to
re-calculate F within these areas (Hunter and Goodchild 1995);

Ð to correct errors of F calculated by some methods including combined
processing of data on mF and F (Heuvelink et al. 1989).

DEMs are also applied to calculate non-local topographic variables, such as
speci® c catchment area, and to reveal thalveg and watershed networks (Moore et al.
1991, Shary et al. 1991). Precision of these techniques has not been adequately
explored (Skidmore 1990, Lee et al. 1992). However, these problems are outside the
scope of the present study.

6. Conclusions

We studied the accuracy of data on G, A, kh and kv. First, we carried out the test
for the precision of four methods for calculation of r, t, s, p and q. We found that
the Evans method is the most precision algorithm of this kind. Second, we produced
formulae for mG , mA , mkh and mk v, provided that G, A, kh and kv are evaluated with
the Evans method. Third, we demonstrated that mapping is the most convenient
and pictorial way for the practical implementation of the formulae derived. The
DEM of the part of the Kursk Region (Russia) was used as an example. We found
that high values of mG , mA , mkh and mk v are typical for ¯ at areas. Results obtained
can be used to improve landscape investigations with DTMs.
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