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Abstract. Digital elevation models (DEMs) given by spheroidal trapezoidal grids
are more appropriate for large regional, sub-continental, continental and global
geological and soil studies than square-spaced DEMs. Here we develop a method
for derivation of topographic variables, speci® cally horizontal (kh ) and vertical
(kv) landsurface curvatures, from spheroidal trapezoidal-spaced DEMs. First, we
derive equations for calculation of partial derivatives of elevation with DEMs of
this sort. Second, we produce formulae for estimation of the method accuracy in
terms of root mean square errors of partial derivatives of elevation, as well as kh

and k v (mkh and mk v respectively) . We design the method for the case that the
Earth’s shape can be ignored, that is, for DEM grid sizes of no more than 225 km.
We test the method by the example of fault recognition using a DEM of a part
of Central Eurasia. A comparative analysis of test results and factual geological
data demonstrates that the method actually works in regions marked by complic-
ated topographic and tectonic conditions. Upon increasing DEM grid size, one
can produce generalised maps of kh and k v. Spatial distributions of mkh and mk v

depend directly on the distribution of elevation RMSE. Areas with high values
of mkh are marked by low values of mk v, and vice versa, areas with high values
of mk v are marked by low values of mkh . Data on mkh and mk v should be utilised
to control and improve applications of kh and k v to geological studies. The method
developed opens up new avenues for carrying out some c̀onventional’ raster
operations directly on geographical co-ordinates.

1 . Introduction

Topography in¯ uences migration and accumulation of substances moved by
gravity along the landsurface and in the soil (Young 1972 ), microclimatic and
meteorological characteristics (Geiger 1966 ), soil formation (Gerrard 1981 ) , and
vegetation cover properties (Yaroshenko 1961 ) , and besides, relief is an indicator of
geological structures, speci® cally faults (Ollier 1981 ). In this connection digital terrain
models (DTMs) are used in soil, hydrological, plant, geomorphic and geological
investigations (see detailed reviews by Moore et al. 1991 , Shary et al. 1991 ,
Florinsky 1998 b).

DTMs can be de® ned as digital representations of variables relating to a topo-
graphic surface, namely: digital elevation models (DEMs), digital models of gradient,
aspect, horizontal (kh ) and vertical (k v) landsurface curvatures, speci® c catchment
area and other topographic attributes (Miller and Le¯ amme 1958 , Burrough 1986 ,
Felicisimo 1994 , Shary 1995 ). Signi® cant scienti® c and practical interest is being
shown in data on kh and k v. k v is the curvature of a normal section of the landsurface;
this section includes a gravity acceleration vector at a given point on the landsurface.
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kh is a curvature of a normal section of the landsurface; this section is orthogonal
to the section with kv (Sobolevsky 1932 , Aandahl 1948 , Evans 1972 , Krcho 1973 ,
Shary 1991 ) .

kh controls the range of convergence of overland and intrasoil ¯ ows: ¯ ows diverge
when kh>0 while ¯ ows converge when kh<0 (Kirkby and Chorley 1967 ). k v deter-
mines relative deceleration of overland and intrasoil ¯ ow movement: ¯ ows accelerate
when k v>0 while ¯ ows decelerate when k v<0 (Speight 1974 ) . Generally, mapping
of kh and k v allows one to reveal ridge/valley spurs and terraces, respectively (Shary
1995 ). kh and k v utilisation and interpretation are possible over a wide range of
scales. Data on kh and k v are used in detailed and large-scaled investigations and
modelling of soil moisture (Troeh 1964 , Kirkby and Chorley 1967 , Burt and Butcher
1985 , Feranec et al. 1991 ), thickness of soil horizons (Aandahl 1948 , Pennock et al.
1987 , Moore et al. 1993 , Gessler et al. 1995 ), soil erosion (Martz and De Jong 1987 ),
landslide distribution (Lanyon and Hall 1983 ), and plant cover (Florinsky and
Kuryakova 1996 ). kh and k v models are applied to geomorphic studies in various
scales (Kvietkauskas 1963 ± 1964 , Evans 1972 , 1980 , 1987 , Franklin 1987 , Dikau 1988 ,
Guzzetti and Reichenbach 1994 ). Hand-derived kh maps ® nd use in middle- and
small-scaled soil mapping (Anisimov et al. 1977 , Stepanov 1979 , 1989 ). Stepanov
(1986 ) and Kuryakova and Florinsky (1991 ) utilised hand-derived kh maps to investi-
gate regularities of spatial interrelations between geological structures, landforms
and soil cover in regional and sub-continental scales. Finally, kh and k v digital models
can be used to reveal faults, geological lineaments and ring structures (Florinsky
1992 ), and to recognise fault morphology (Florinsky 1996 ) at di� erent scales.

Once elevations are given by z=f (x, y) where x and y are plane Cartesian
co-ordinates, kh and k v are functions of the partial derivatives of z (Shary 1991 ) :
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One can calculate r, t, s, p and q with square-spaced DEMs by some methods (e.g.
Evans 1979 , Zevenbergen and Thorne 1987 , Moore et al. 1993 ). The method of
Evans (1979 ) has received wide acceptance owing to the ease and fast data processing,
and high calculation accuracy (Florinsky 1998 a).

In the Evans method, the polynomial

z=
rx
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2
+

ty
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2
+sxy+px+qy+u (4 )

is approximated by the least squares method (§2 ) to the 3 by 3 square-spaced altitude
submatrix with a grid size of w ( ® gure 1 (a)). Points of the submatrix (Õ w, w, z1 ) ,

( 0, w, z2 ) , (w, w, z3 ) , (Õ w, 0, z4 ) , ( 0, 0, z5 ) , (w, 0, z6 ) , (Õ w, w, z7 ) , ( 0, Õ w, z8 ) and
(w, Õ w, z9 ) are measured plane Cartesian co-ordinates and elevations of the
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Figure 1. (a) submatrix for a square-spaced DEM: 1, ..., 9 are numbers of the submatrix
nodes, w is a grid size in metres, (b) submatrix for a DEM given by a spheroidal
trapezoidal grid: 1, ..., 9 are numbers of the submatrix nodes, a, b and c are lengths of
parallel arcs in metres, d and e are lengths of meridian arcs in metres.

landsurface. As a result, we can estimate values of r, t, s, p and q at the point (0, 0, z5 )
by the following formulae:

r=
z1+z3+z4+z6+z7+z9 Õ 2 (z2+z5+z8 )

3w
2 , (5 )

t=
z1+z2+z3+z7+z8+z9 Õ 2 (z4+z5+z6 )

3w
2 , (6 )

s=
z3+z7 Õ z1 Õ z9

4w
2 , (7 )

p=
z3+z6+z9 Õ z1 Õ z4 Õ z7

6w
, (8 )

q=
z1+z2+z3 Õ z7 Õ z8 Õ z9

6w
. (9 )

Moving the 3 by 3 submatrix along a regular DEM, we can calculate values of r, t,

s, p and q for all points of the DEM, excepting boundary points. We do not present
a formula for the absolute term u in the polynomial (equation (4 )) , since u is not
used in calculation of kh and k v. Notice that Sharpnack and Akin (1969 ) proposed
expressions for p and q identical with equations (8 and 9 ). Equations (5 ± 9 ) can be
derived in the same fashion that we use in §2.

Equations (1 ± 3 ) are true for landsurface areas when the Earth’s sphericity can
be ignored (Shary 1991 ). Therefore, digital models and maps of kh and k v described
relatively local properties of the landsurface but do not consider the Earth’s shape.
We assume that this shape can be neglected if an area has a distance of no more
than about 0.1RE where RE is the Earth’s average radius, RE#6378 km (e.g.
Bugaevsky and Vakhrameyeva 1992 ). This limitation pertains only to the submatrix
size as one can use the principle of a moving submatrix to estimate kh and k v (see
above). The submatrix size cannot be more than about 450 km by 450 km as a
submatrix diagonal is no more than about 640 km. So, equations (1 ± 3 ) can be used
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if DEMs have grid sizes of no more than about 225 km. We should stress that the
overall size of a territory under study can be as large as is wished.

However, the geometry of square-spaced grids of the 3 by 3 submatrix ( ® gure
1 (a)) and DEMs suitable for the Evans method sets limits both on the overall size
of a studied terrain and on the properties of topographic maps utilised for DEM
compilation. Indeed, one can use the Evans method (equation (5 ± 9 )) if and only if
the horizontal projection of a de® ned square-spaced altitude grid is also a square-
spaced grid. This can be met for DEMs obtained by (a) conventional ground
topographic surveys (Modrinsky 1972 ), (b) photogrammetric processing of two over-
lapping aerial orthoimages (Bobir et al. 1974 ) , and (c) digitising contours of topo-
graphic maps (Kumler 1994 ) given in projections marked by minimum distortions
in conformality and distance.

Two closely related conformal projections meet the latest condition, namely: the
Gauss-KruÈ ger and the Universal Transverse Mercator (UTM) projections
(Bugaevsky and Vakhrameyeva 1992 ) . The Gauss-KruÈ ger projection is applied to
compile topographic maps of 152000 ± 15500 000 scales in Russia while the UTM is
commonly used for topographic mapping in other countries. With these projections,
the spheroidal surface is divided into 6 ß zones by meridians. Each of these zones is
mapped individually. Distance distortions increase away from the central meridian
of a zone. For example, at 6 ß zone boundaries the Gauss-KruÈ ger projection o� ers
distance overestimation of 0.0009, 0.0006, 0.0004 and 0.0003 for parallels of 40 ß , 50 ß ,
60 ß and 70 ß , respectively (Salishchev 1990 ). So, distance distortion can be ignored
for each of 6 ß zones. Based on the feasible size of a territory lying within a 6 ß zone,
one can apply its DTM to detailed and regional soil, hydrological, plant, geomorphic
and geological investigations.

The Evans method is not appropriate for use in at least two cases:
1. If one carries out geological or soil study of a sizeable area located within two

or more 6 ß zones. Although a DEM may be compiled by portions related to 6 ß
zones, di� culties ensue with accurate jointing of adjacent sub-DEMs. Also, although
the Evans method may be applied to derive kh and k v models from sub-DEMs, there
is a problem of linking of kh and k v sub-models. This is because r, t, s, p and q are
not calculated for DEM boundary points (see above). This causes `blank strips’
between adjacent sub-DTMs. Besides, a sub-DTM can be too small. For example,
near the equator a sub-DEM and a kh sub-model can include about 100 and 64

points, correspondingly, for an area measuring 6 ß by 4 ß and w=55 km.
2. If to compile a DEM for a small-scaled geological or soil study one uses maps

with signi® cant distortions in conformality and distance, such as 151 000 000 topo-
graphic maps given in the modi® ed polyconic projection (Bugaevsky and
Vakhrameyeva 1992 ) . In this case, the horizontal projection of a de® ned square-
spaced altitude grid is not a square-spaced grid. Besides, projection distortions can
lead to artefacts in geological studies (Carey 1988 ), for example, through rectilinear
lineaments, faults and other geological patterns can be mapped as curvilinear ones
(Ollier 1981 ) . Although one may resolve these di� culties by relevant transformations
of a DEM projection, errors can arise in the transformed DEM due to elevation
interpolation (Schut 1976 ) .

In our opinion, the best solution of the problems discussed is to process immedi-
ately spheroidal trapezoidal-spaced DEMs rather than square-spaced ones for kh and
k v derivation in large regional, sub-continental, continental and global geological
and soil studies. This is because DEMs given by spheroidal trapezoidal grids (a) are
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free of projection distortions, (b) can be compiled for sizeable areas without radical
di� culties, and (c) may ideally be free of interpolation errors. Nodes of these DEMs
relate to parallel and meridian intersections ( ® gure 1 (b)). One can readily estimate
the spatially varying DEM grid size ( lengths of trapezoidal bases and legs), since
parallel and meridian arc lengths are known (e.g. Bugaevsky and Vakhrameyeva
1992 ). Generally, spheroidal trapezoidal-spaced DEMs are described in the spherical
(geographical ) co-ordinate system. Obviously, one can describe square-spaced DEMs
in the geographical co-ordinates too, but a spheroidal trapezoidal-spaced grid and
a square-spaced one are marked by radically di� erent geometry ( ® gure 1 ) .

The objective of this study is to develop a method for derivation of topographic
variables, speci® cally kh and k v, from DEMs given by spheroidal trapezoidal grids.
We cover the case that the Earth’s shape is ignored, that is, DEM grid sizes of no
more than 225 km. First, we derive equations for calculation of r, t, s, p and q with
spheroidal trapezoidal-spaced DEMs. Second, we produce formulae for estimating
accuracy in terms of root mean square errors (RMSE) of r, t, s, p and q, as well as
kh and k v. Third, we test the method by the example of fault recognition using a
DEM of a part of Central Eurasia.

2 . Calculation of r, t, s, p and q with DEM s given by a spheroidal trapezoidal grid

Assume that elevations are given by z=f (x, y) where x and y are spherical
orthogonal co-ordinates. Let there be a 3 by 3 submatrix with nodes relating to
apices of four adjacent spheroidal trapeziums that lie in the Earth’s spheroid or
ellipsoid surface. Two trapeziums have bases of a and b and legs of d, while two
other trapeziums have bases of b and c and legs of e. a, b and c are lengths of parallel
arcs in metres, while d and e are lengths of meridian arcs in metres ( ® gure 1 (b)).
Points of the submatrix (Õ c, e, z1 ) , ( 0, e, z2 ) , (c, e, z3 ) , (Õ b, 0, z4 ) , ( 0, 0, z5 ) , (b, 0, z6 ) ,

(Õ a, Õ d, z7 ) , ( 0, Õ d, z8 ) and (a, Õ d, z9 ) are measured spherical orthogonal co-ordin-
ates and elevations of the landsurface. We ignore the Earth’s shape within the
submatrix, that is a, b, c, d and e are no more than 225 km (§1 ).

To develop formulae for derivation of r, t, s, p and q from a DEM given by a
spheroidal trapezoidal grid let us approximate the polynomial (equation (4 )) to the
submatrix ( ® gure 1 (b)) by the least squares method (Bronstein and Semendyaev
1956 , Bjerhammar 1973 ). With this method, if we can estimate values of f i of some
functions Q i(x1, x2 , ..., xn ), i=1, 2, ..., m , of unknowns x1, x2 , ..., xn , so to determine
unknowns we should solve a system of so-called conditional equations
Q i(x1, x2 , ..., xn ) Õ f i=0. This is the incompatible equation system for m>n. Therefore,
we can estimate only the most probable values of unknowns. A sum of deviation
squared e i=Q iÕ f i is the least for this case. If the conditional equations are linear
ones:

G a1x1+b1x2+ ´´´ +l1xn=f 1

a2x1+b2x2+ ´´´ +l2xn=f 2

..................................................

amx1+bmx2+ ´´´ +lmxn=fm

, (10 )

so to accomplish a minimum for the sum of deviations squared we should solve a
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We do not present a formula for the absolute term u in the polynomial (equation
(4 )) , since u is not used in calculation of kh and k v. We produced the equation (23 )
with the software Maple V 3.0 for Microsoft Windows.

As in the Evans method, the polynomial (equation (4 )) is approximate d to
elevation values of the 3 by 3 submatrix ( ® gure 1 (b)) rather than passes exactly

through these values. This leads to some local ® ltering of high-frequency noise
resulting from small random errors in DEM compilation (Shary 1995 ). This can
correct calculation of derivatives because they are very responsive to high-frequency
component of a signal (e.g. Pratt 1978 ). Surplus data are a further merit of the
method developed: nine elevation values are used to estimate six coe� cients of the
polynomial (equation (4 )) . This improves the accuracy and tolerance of computations
(Bugaevsky, personal communication 1993 ).

3 . Accuracy of r, t, s, p, q, kh and kv calculated by the method developed

Let us estimate the precision of the method developed. r, t, s, p and q (equations
(24 ± 28 )) are functions F of measured variables F=Q(x, y, ..., u) where x, y, ..., u are
measured arguments, that is, z i , i=1, ..., 9. The RMSE of F (mF ) would be appropriate
to evaluate the calculation accuracy of r, t, s, p and q (Kuryakova 1996 , Florinsky
1998a). To estimate mF the following formula can be applied (Gaidaev and Bolshakov
1969 , p. 129 ) :

mF= SA ‚ F
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where mx , my , ..., mu are RMSE of x, y, ..., u, respectively.
Let us produce formulae of RMSE for r, t, s, p and q (mr , m t , m s , mp and mq ,

respectively) with the equation (29 ) . In particular,
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i
=y(x, y) where x and y are spherical orthogonal co-ordinates. m z

i
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on geomorphic conditions and a method of DEM compilation (Hunter and
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Goodchild 1995 ) . However, for a DEM produced by interpolation of digitised
contours

mz
i
=const=BDz (31 )

where B=0.16 ± 0.33, Dz is a contour interval (Li 1994 ). The factor B depends on
geomorphic conditions, and the extent to which additional data on speci® c features
(i.e. peaks and thalvegs) are taking into consideration in the DEM compilation. So,
let us consider m z

1
=mz

2
= ´´´ =m z

9
=mz . Substituting mz into the equation (30 ) gives:
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Through di� erentiation and simple algebraic operations, we obtain the following
expression of m r :
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In a similar manner, we derive the required expressions of m t , m s , mp and mq :
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Let us derive expressions for RMSE of kh and k v (mkh and mkv , respectively) with
the equation (29 ). Equations (1 and 2 ) should be tested to determine mkh and mkv ,
although some simpli® ed expressions of kh and kv are common in the literature (e.g.
Pennock et al. 1987 , Zevenbergen and Thorne 1987 ). However, equations (1 and 2 )
most closely correspond to the physical and mathematical theory of surface in gravity
(Shary 1991 , 1995 ). As measured arguments, we use r, t, s, p and q calculated by the
method developed (equations (24 ± 28 )). Formulae for mkh and mk v are developed in
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a manner like m r , m t , ms , mp and mq (equations (33 ± 37 )) were derived:
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4 . Method testing

4.1. Study area

The study area is situated in Central Eurasia ( ® gure 2 ) . The area lies within ® ve
6 ß longitude zones and measures 30 ß by 20 ß . The study area is marked by a diversity
of relief ( ® gure 3 (a)) and tectonics ( ® gure 3 (b)) . The tectonic structure of the study
area is complicated by many faults (Solovyev 1977 , Suvorov 1997 a, 1977 b, Trifonov
et al. 1983 , Koronovsky 1984 ). North and northwest-striking faults are dominant.
Some east and northeast-striking faults are also observed ( ® gure 3 (b)). Generally,
the topography depends directly on the tectonic structure within the area
(Meshcheryakov 1972 , Koronovsky 1984 ) .

The central and southern parts of the study area are occupied by the Turan
lowland ( ® gure 3 (a)) relating to the Turan Epipalaeozoic plate ( ® gure 3 (b)). There
are marine, alluvial, arid destructional and accumulative plains (elevations are
50 ± 200 m), plateaus (elevations are 300 ± 400 m), depressions (depths are down to
Õ 132 m), and inselbergs (elevations are up to 1000 m). The Kazakh hummocky
terrain is situated to the north-east of the Turan lowland ( ® gure 3 (a)) within the
Central Kazakhstan Caledonian and the Dzhungar ± Balkhash Hercynian folding
zones ( ® gure 3 (b)). There is a high rolling plain with numerous hills (elevations are
300 ± 500 m) and some low mountains (elevations are up to 1566 m). The South Urals
are located north of the Turan lowland ( ® gure 3 (a)) . They are epiplatformian middle
mountains (elevations are up to 1640 m) corresponding to the Ural Hercynian folding
zone ( ® gure 3 (b)). The South Urals consist of a main watershed ridge and some
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Figure 2. Geographical location of the study area (between 36 ß and 56 ß N, and 48 ß and
78 ß E).

lateral ridges divided by broad depressions. The West Siberian plain is located east
of the South Urals ( ® gure 3 (a)). This is an inclined plain (elevations are up to 300 m)
corresponding to the West Siberian Epipalaeozoic plate ( ® gure 3 (b)) . The Obshchy
Syrt plateau and the Bugulma± Belebey upland (elevations are up to 400 m) are
situated to the west of the South Urals ( ® gure 3 (a)) . These terrains relate to the
south-east edge of the East European Precambrian platform ( ® gure 3 (b)) .

There are the Caspian lowland and the Caspian sea depression in the west of
the study area ( ® gure 3 (a)) . The Caspian lowland (elevations range from Õ 28 m to
100 m) relates to the East European Precambrian platform ( ® gure 3 (b)). The northern
part of the Caspian depression (depths are down to Õ 790 m) corresponds to the
junction of the Turan and the Scythian Epipalaeozoic plates. The South Caspian
abyssal depression (depths are down to Õ 1025 m) lacks the granite layer.

Epiplatformian mountains of the West Tien Shan and the Gissaro-Alai are located
south of the Kazakh hummocky terrain ( ® gure 3 (a)). Generally, the Gissaro-Alai
have an alpine type of relief (elevations are up to 5621 m). The Tien Shan consist of
three near-east-striking block ridges (elevations are up to 7439 m) divided by inter-
mountain depressions. These territories correspond to the North Tien Shan
Caledonian and the South Tien Shan Hercynian folding zones ( ® gure 3 (b)) . In the
south-west of the study area there are eastern extremities of the Great Caucasus
ridges (elevations are up to 3000 m), some ridges of the Elburz (elevations are up to
4000 m), and the Kopetdag mountains (elevations are up to 3117 m) ( ® gure 3 (a)).
These systems relate to Alpine folding zones of the Mediterranean geosynclinal belt
( ® gure 3 (b)) . In the south-east of the study area are the north-eastern ridges of the
Hindu Kush, the Pamir mountainous land, north-western extremities of the
Karakorum and the Kun Lun ridges, and the western part of the Kashgar plain
( ® gure 3 (a)) . The Hindu Kush are alpine mountains (elevations are up to 7690 m).
The eastern and western Pamirs involve alpine ridges (elevations are up to 7497 m),
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while the central Pamirs consist of weathered ridges (elevations are up to 6000 m)
and ¯ at valleys and depressions (elevations are 3500 ± 4500 m). The Karakorum have
alpine landforms, with the highest point of the study area (7785 m). The Hindu
Kush, the Pamirs and the Karakorum relate to Alpine folding zones of the
Mediterranean geosynclinal belt, while the Kun Lun relates to a Hercynian folding
zone ( ® gure 3 (b)). The Kashgar plain has elevations of about 1300 m, it corresponds
to the Tarim Precambrian platformian massif ( ® gure 3 (b)) .

4.2. Materials and methods

To test the method developed we compiled a spheroidal trapezoidal-spaced DEM
of the study area using 25 sheets of 151 000 000 scaled topographic map (General
Headquarters 1960 ± 1967 , Central Board of Geodesy and Cartography 1962 ± 1969 ).
We digitised elevation values in nodes of the regular grid with 0.5 ß mesh. As a rule,
elevation values were interpolated manually using contours. The DEM obtained
includes 2501 points.

Results of kh and k v calculation and mapping essentially depend on DEM grid
size as demonstrated by some experiments (Evans 1980 , Florinsky 1991 , Kuryakova
1996 ) and an analysis of equations (24 ± 28 ). Upon increasing DEM grid size, one
can produce more generalised versions of kh and k v maps. To study this e� ect we
obtained kh and k v models by the method developed using two grid sizes: 0.5 ß
( ® gures 4 (a) and 5 (a)) and 1 ß ( ® gures 4 (b) and 5 (b)) . Also, we derived mkh and mkv

models with these grid sizes ( ® gures 4 (c), 4 (d ), 5 (c) and 5 (d )). Digital models of kh ,
k v, mkh and mkv calculated with the grid size of 0.5 ß include 2301 points, while related
models calculated with the grid size of 1 ß include 551 points.

As a, b, c, d and e we used values of parallel and meridian arc lengths relating
to the Krasovsky ellipsoid (Bugaevsky and Vakhrameyeva 1992 ). The length of 0.5 ß
parallel arc ranges from 45 083 m on 36 ß N to 31 197 m on 56 ß N, while the length
of 0.5 ß meridian arc ranges between 55 488 m on 36 ß N and 55 679 m on 56 ß N.

In the DEM compilation, we used interpolation of contours (see above), so the
equation (31 ) can be applied to estimate values of mz . We set the factor B=0.25 as
a median value from the proposed ones (§3 ). A contour interval Dz varies from 25 m
to 200 m with geomorphic conditions (table 1 ) within the maps used. Therefore, for
di� erent parts of the DEM we applied di� erent values of m z (table 1 ) in calculation
of m r , m t , ms , mp and mq (equations (33 ± 37 )) .

For revealing topographically expressed faults it is necessary (a) to calculate kh

and k v by DEM processing, (b) to stratify kh and k v values into two levels with
respect to the zero, and (c) to map kh and k v. Lineaments revealed on kh maps
indicate faults formed mostly by horizontal tectonic motions ( i.e. strike-slip faults).
Lineaments recognised by k v mapping correspond to faults formed mainly by vertical
motions (i.e. dip-slip and reverse faults) and thrusting. Lineaments recorded on both
kh and k v maps indicate, as a rule, oblique-slip and gaping faults. For non-inverted
relief, one can compare elevations on one and the other sides of a lineament on a
k v map to determine the direction of a vertical displacement. The detailed justi® -
cation, description and limitations of the topographic method of fault morphology
recognition can be found elsewhere (Florinsky 1996 ).

We compiled the map of revealed and morphologically classi® ed faults ( ® gure 6 )
by a visual analysis of the kh and kv maps obtained with the grid size of 0.5 ß
( ® gures 4 (a) and 5 (a)). Generally, to compile the fault map ( ® gure 6 ) we drew median
lines of lineaments recorded on the kh and k v maps ( ® gures 4 (a) and 5 (a)). We did
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Figure 6. Faults revealed with the maps of kh and k v calculated for the grid size of 0.5 ß ;
I strike-slip faults, II dip-slip faults and thrusts, III oblique-slip faults: 1a Kopetdag
thrust, 1b Kopetdag strike-slip fault, 2 strike-slip fault, 3 Talas-Fergana hinge dip-slip
fault, 4 Amudarya dip-slip fault, 5 oblique-slip fault, 6 strike-slip fault, 7 strike-slip fault,
8 dip-slip fault, 9 complex of strike-slip faults, 10 complex of dip-slip faults, 11 complic-
ated fault, 12 hinge dip-slip fault.

that a portion of the revealed faults is strongly correlated with familiar ones. For
instance, there is the Kopetdag thrust and strike-slip fault, and fault 2̀’ ( ® gures 3 (b)
and 6 ). A portion of the revealed faults partially ® ts familiar structures (e.g. the
Tales-Fergana and the Amudarya dip-slip faults Ð ® gures 3 (b) and 6 ) . Some revealed
faults are extentions of familiar ones. For example, oblique-slip fault 5̀’ is an extension
of the West Ulutau thrust, and strike-slip fault 6̀’ is an extension of the Guryev fault
( ® gures 3 (b) and 6 ) . A portion of the revealed faults does not correlate with faults
mapped by Solovyev (1977 ), Suvorov (1977a, 1977b), Trifonov et al. (1983 ) and
Koronovsky (1984 ). Among these are strike-slip fault 7̀’ and dip-slip fault 8̀’
( ® gure 6 ). Their origin is the subject of a speci® c study. Also, not all the familar
faults are revealed, such as the Vakhsh thrust and the Samara-Toksk dislocation
megazone ( ® gure 3 (b)). This can be the result of using the single grid size for fault
revealing. To recognise all the topographically expressed faults one should apply a
set of kh and k v maps obtained with a range of grid sizes (Florinsky 1996 ) . Besides,
relief cannot express some faults.

The fault map obtained displays a complicated spatial distribution of structures
( ® gure 6 ). Strike-slip, dip-slip and thrusts unite into complexes (e.g. complexes 9̀’
and 1̀0’ Ð ® gure 6 ) . As a rule, strike-slip faults stretch across dip-slip ones. Some
complicated faults include dip-slip, strike-slip and oblique-slip o� sets (e.g fault 1̀1 Ð
® gure 6 ) . Also, some hinge dip-slip faults are revealed, such as the Talas-Fergana
fault and fault 1̀2’ ( ® gure 6 ). These tendencies of fault distribution were also found
for other regions by the topographic method of fault revealing using square-spaced
DEMs and the Evans method (Florinsky et al. 1995 , Florinsky 1996 ). The results
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obtained demonstrate that the method developed actually works with respect to
fault revealing in regions marked by complicated topographic and tectonic
conditions.

Using the grid size of 1 ß , we obtained generalised versions of kh and k v maps
( ® gures 4 (b) and 5 (b)). Narrow zones of ¯ ow divergence (kh> 0 ) and convergence
(kh< 0 ) ( ® gure 4 (a)) transformed to corresponding wide strips ( ® gure 4 (b)) . In a
similar manner, narrow zones of relative ¯ ow acceleration (k v> 0 ) and deceleration
(k v< 0 ) ( ® gure 5 (a)) transformed to corresponding wide areas ( ® gure 5 (b)) . Notice
that maximal values of kh and k v obtained with the grid size of 1 ß ( ® gures 4 (b) and
5 (b)) are one order of magnitude smaller than maximal values of these variables
obtained with the grid size of 0.5 ß ( ® gures 4 (a) and 5 (a)). With increasing DEM grid
size, analogous trends for slope gradient, kh , k v, mean and total landsurface curvatures
were observed before (Evans 1980 , Chang and Tsai 1991 , Florinsky 1991 ,
Kuryakova 1996 ).

Notice that kh and k v maps obtained with the grid size of 1 ß ( ® gures 4 (b) and
5 (b)) are too generalised: they are marked by poor informative capacity. In geo-
morphic and geological investigations, DEM grid size depends on the typical size of
landforms or geological structures of interest (Evans 1972 , Florinsky 1996 ) . However,
for each DEM one can ® nd experimentally a speci® c range of grid sizes to reach a
compromise between amount of information and readability and interpretability of
the kh and k v maps (Florinsky 1991 , Kuryakova 1996 ) . The DEM resolution, geo-
morphic conditions, size of a territory, and scale of kh and kv maps dictate this grid
size range. For the study area (§4.1 ) and the DEM used (§4.2, ® gure 3 (a)) the grid
size of 0.5 ß is among the range of proper grid sizes, while the grid size of 1 ß is outside
this range. This is demonstrated by the information-poor maps of kh and k v ( ® gures
4 (b) and 5 (b)) relating to the latter resolution. This resolution may be appropriate
for territories measuring 50 ß by 50 ß and more, and for mapping at scales of
1550 000 000 and smaller.

The spatial distribution of mkh and mkv obtained with grid size of 0.5 ß ( ® gures
4 (c) and 5 (c) depends directly on the m z distribution. Indeed, high values of mkh and
mkv are, as a rule, located within mountainous regions marked by high values of m z

due to large contour intervals (table 1, §4.2 ). Within these areas values of mkh and
mkv exceed maximal values of kh and k v, respectively. However, this does not mean
that kh and k v maps ( ® gures 4 (a) and 5 (a)) are invalid there. This is because RMSE
is a statistical property of a function F , that is, mF indicates a probability of error
rather than the mandatory existence of error. Within zones marked by high values
of mkh and mkv one has to interpret data on kh and k v with scepticism or, better still,
to recompile these DEM portions (Hunter and Goodchild 1995 , Florinsky 1998a)
using the same grid size but more precise maps (with smaller contour interval and
thus smaller m z ). Therefore, it is wise to digitise contours of middle-scaled topographic
maps (e.g., 15200 000 ) if one studies a mountainous region using DTM resolution of
about 0.5 ß and more.

Using the grid size of 1 ß , we obtained generalised versions of mkh and mkv maps
( ® gures 4 (d ) and 5 (d )). In this case, the trend of spatial distribution of mkh and mkv

is identical to that for the grid size of 0.5 ß ( ® gures 4 (c) and 5 (c)). Maximal values of
mkh and mkv are much the same for DEM resolution of both 0.5 ß ( ® gures 4 (c) and
5 (c)) and 1 ß ( ® gures 4 (d ) and 5 (d )). It is notably that areas with high values of mkh

( ® gures 4 (c) and 4 (d )) are marked by low values of mkv ( ® gures 5 (c) and 5 (d )), and
vice versa. We suppose that this property of the mkh and mkv functions (equations (38

and (39 )) may be observed in any other areas.
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The following question arises: how much di� erence does the method developed
make in r, t, s, p, q, kh and k v calculation compared with the Evans method? This
comparison can be done only if we can apply both the Evans method and the
method proposed to a common DEM, that is, nodes of a plane square grid coincide
with nodes of a spheroidal trapezoidal grid. For example, Guzzetti and Reichenbach
(1994 ) used a square-spaced DEM of Italy marked by the resolution of 7.7 ² of
latitude and 10 ² of longitude, that is, w #230 m. In this case a = b = c = d = e = w ,
so equations (24 ± 28 ) reduce to equations (5 ± 9 ). Therefore, application of both the
Evans method and the method developed gives identical results: a test is not needed.
Along similar lines, equations (33 ± 39 ) reduce to related formulae of m r , m t , ms , mp ,
mq , mkh and mkv for the Evans method (Florinsky 1998a) if a = b = c= d = e = w .

The method developed opens up new avenues for carrying out some c̀onventional’
raster operations directly on geographical co-ordinates. For example, equations (27

and 28 ) can be applied to derive slope gradient and aspect (Evans 1972 , 1980 , Shary
1991 ) and re¯ ectance (Horn 1981 ), since the latest is used in regional and continental
works (Moore and Simpson 1983 , Edwards and Davis 1994 , Guzzetti and
Reichenbach 1994 ) . Also, the method can be used to derive variables of imaginary
surfaces, such as a mean curvature of a s̀urface’ of a velocity of the modern vertical
movements of the Earth’s crust (Grachev et al. 1988 ).

Besides, the method can be employed to treat available spheroidal trapezoidal-
spaced DEMs, for instance, the 5 ¾ -spaced global DEM, Etopo5 (NOAA 1988 ) , and
the 56.25 ² -spaced DEM of Mars (Batson and Eliason 1995 ). Although one may
interpolate DEMs of this sort into square-shaped ones (e.g. Moore and Simpson
1983 ), errors can occur in the resulting DEMs (Schut 1976 ). Moreover, operational
di� culties may arise for a sizeable territory under study (§1 ). So, there are good
reasons to process these DEMs without transformation into square-spaced ones.

There is a further reason to use spheroidal trapezoidal-spaced DEMs and the
method developed. Geological investigations can involve a combined analysis of
geological, geophysical and topographic data (Ollier 1981 , Moore and Simpson 1983 ,
Poletaev et al. 1991 , McMahon and North 1993 ). Generally, geophysical data are
available with spheroidal trapezoidal grids. In addition, the spherical co-ordinate
system is at times used to prevent projection distortions in geological experiments
Besprozvanny et al. 1994 ). Utilisation of DTMs given by the same grid type can
simplify and improve comparison of topographic, geophysical and geological data,
since one can omit ancillary steps of projection transformation and interpolation.

In closing we should stress again that we designed the method for the case that
the Earth’s shape is ignored, that is, for DEM grid meshes of no more than 225 km.
The Earth’s sphericity has to be taken into account if one should derive kh and k v

from a DEM with greater grid mesh. However, development of a related method is
the subject of another study.

6 . Conclusions

1. DEMs given by spheroidal trapezoidal grids are more appropriate for large
regional, sub-continental, continental and global geological and soil studies
than square-spaced DEMs.

2. We developed the method for derivation of topographic variables, speci® cally
kh and k v, from DEMs given by spheroidal trapezoidal grids. Equations for
calculation of r, t, s, p and q with DEMs of this sort were derived. Also,
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formulae for estimation of m r , m t , m s , mp , mq , mkh and mkv were produced. We
designed the method for the case that the Earth’s shape is ignored, that is, for
DEM grid sizes of no more than 225 km.

3. We tested the method by the example of fault recognition. A comparative
analysis of the test results and factual geological data demonstrates that the
method actually works in regions marked by complicated topographic and
tectonic conditions.

4. Upon increasing the DEM grid size, one can produce generalised maps of kh

and k v. For each DEM, one can ® nd a speci® c range of grid sizes to reach a
compromise between the amount of information and the readability and
interpretability of kh and k v maps.

5. Spatial distribution of mkh and mkv depends directly on spatial distribution of
m z . Areas with high values of mkh are marked by low values of mkv , and vice

versa, areas with high values of mkv are marked by low values of mkh . Data
on mkh and mkv should be applied to control and improve utilisation of kh and
k v in geological studies.

6. The method developed opens up new avenues for carrying out some c̀onven-
tional’ raster operations directly on geographical co-ordinates.

Acknowledgments

The author performed the work without a ® nancial support from government
and private funds. The author is grateful to P. V. Kozlov (ZAO ÌC Protek’, Moscow,
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