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Abstract. We present new interpretation of three classes of errors in digital
terrain models (DTMs) which can be sources of artefacts in DTM-based studies:
(a) errors in interpolation of digital elevation models (DEMs) caused by the Gibbs
phenomenon; (b) errors in DTM derivation from DEMs with ‘enhanced’ resolution
due to noise increase after DEM diVerentiation; (c) errors in DTM derivation
caused by displacement of a DEM grid. Explanation of artefact roots and ways
to avoid them are carried out in the context of the theory of signal processing.
The Gibbs phenomenon is a speci� c behaviour of some functions manifested as
over- and undershoots near a jump discontinuity. Any DEM includes jump
discontinuities of the elevation, such as escarpments and pronounced errors of
DEM generation. There are four main ways to prevent or reduce DEM errors
caused by the Gibbs phenomenon: (a) decreasing the jump discontinuity before
DEM interpolation; (b) using interpolation functions which do not generate the
Gibbs phenomenon; (c) omitting over- and undershoots after DEM interpolation;
(d) � ltering the Gibbs phenomenon. Derivation of topographic variables from
DEMs marked by ‘enhanced’ resolution can lead to artefacts. If a DEM of this
kind is interpolated by triangulation-based algorithms, triangular patterns may
be revealed on maps of topographic variables. If an ‘enhanced’ resolution of DEM
is achieved by the weighted average methods of interpolation, contour ‘traces’
may be seen on maps. This is because partial derivatives used to calculate some
topographic variables are very responsive to high-frequency components of a
DEM. To prevent these errors one should use a regular DEM with a grid space
relating to an average distance between points in an irregular DEM. Displacement
of a grid of points, wherein elevation values are interpolated or determined,
in� uences the derivation of topographic variables (e.g. map design of horizontal
and vertical curvatures). Some patterns break, merge, and change their width and
length. Small dots, lines, and particles of big patterns can appear and disappear
on maps. These eVects should be taken into account in the application of these
maps to DTM-based geological studies.

1. Introduction
Digital terrain modelling can be de� ned as a system of quantitative methods to

analyse and model the landsurface and relationships between the topography and
geological, hydrological, biological and anthropogeni c components of the landscape.
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By digital terrain models (DTMs) we mean digital representations of variables
describing the topographic surface, namely: digital elevation models (DEMs), digital
models of slope gradient (G), aspect (A), horizontal (k

h
), vertical (k

v
), mean (H ) and

Gaussian (K) landsurface curvatures (Appendix), speci� c catchment area, topo-
graphic and stream power indices as well as some other topographic attributes
(Burrough 1986, Shary 1995). Digital terrain modelling is extensively used in geo-
sciences (Moore et al. 1991, Shary et al. 1991, Weibel and Heller 1991, Florinsky
1998a, Pike 2000).

A large number of studies have been focused on aspects of the problem of errors
in digital terrain modelling, such as types, sources and eVects of DTM errors, methods
for their recognition, analysis, measurements, mapping and prevention (see details
and references in Florinsky 1998a) . In particular, much attention has been given to

DTM errors as sources of artefacts, such as false landforms (McCullagh 1988, 1998,
Wood and Fisher 1993, Robinson 1994, Eklundh and MaÃ rtensson 1995, Hunter and

Goodchild 1995, Desmet 1997, Veregin 1997, Wise 1998, Endreny et al. 2000). This
topic is important because false landforms initiated by DTM errors can lead to
geomorphic and geological misinterpretation of DTMs. Also, these artefacts can

adversely eVect DTM-based hydrological, soil and geomorphic modelling due to
propagation of DTM errors (Weibel and Brändli 1995, Desmet 1997, Bates et al.

1998, Wise 2000).
From the algorithmic standpoint, digital terrain modelling can be considered as

a special case of the more general � eld of signal processing. Some common mathemat-
ical methods and technical principles of this � eld are employed in digital terrain

modelling, such as approximation, discretisation (sampling), interpolation and
diVerentiation (Mitra 1998). Thus some errors of digital terrain modelling have
analogues in signal processing. Among them, there are three classes of errors that

have not been adequately studied, as applied to digital terrain modelling:

Errors in DEM interpolation caused by the Gibbs phenomenon;
Errors in DTM derivation from DEMs with ‘enhanced’ resolution due to noise

increase after DEM diVerentiation;
Errors in DTM derivation caused by the displacement of DEM grids.

These errors create false landforms, so their examination is particularly important

for geomorphic and geological applications of digital terrain modelling. The objective
of this study is to describe theoretical causes and eVects of these three classes of

DTM errors, to present examples, and to discuss practical ways to prevent them in
digital terrain modelling.

2. Errors in DEM interpolation caused by the Gibbs phenomenon
2.1. Problem statement

The Gibbs phenomenon is a speci� c behaviour of some functions manifested as
over- and undershoots around a jump discontinuity (Hewitt and Hewitt 1980, Jerri

1998). The Gibbs phenomenon is typical for the Fourier series, orthogonal poly-
nomials, splines, wavelets, and some other approximation functions (Jerri 1998). It
appears in many scienti� c problems and applications involving digital signal and

image processing (Rosenfeld and Kak 1982, Mitra 1998).
For the one-dimensional case, the simplest mathematical illustration of the Gibbs
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phenomenon is an approximation of a square wave function (� gure 1(a))

F (x) 5 G 1, 0<x<p

0, x 5 0, Ô p

Õ 1, Õ p<x<0

(1)

by a trigonometric polynomial of the form
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The polynomial (equation (2)) converges uniformly to the square wave function
(equation (1)) except at points x 5 0, Ô p which are points of discontinuity of F(x).
This means that as k increases, graphs of the partial sums f

2k Õ 1
(x) adjoin arbitrarily

closely the lines F (x) 5 Ô 1 except near the points x 5 0, Ô p (� gures 1 (b–e)). This
defect of convergence manifests itself as over- and undershoots around the points
x 5 0, Ô p. It is important that as k increases, a vertical size of these over- and
undershoots does not decrease (� gures 1(b–e)). It is equal to 17.9% of half the jump
size or 8.95% of the jump size. As k � 2 , an ultimate geometrical image of curves
f
2k Õ 1

(x) is a jogged line including extended vertical legs as big as 8.95% of the jump
size (� gure 1( f )) (Fikhtengolts 1966). Increasing k, it is possible to reduce the
horizontal extension of the Gibbs phenomenon only (� gure 1).

In the Gibbs phenomenon, over- and undershoot size depends on the size of the
jump discontinuity and a sort of function. In the classical case of the Fourier series,

Figure 1. Approximation of the square wave function by the trigonometric polynomial:
(a) square wave function; partial sums: (b) k 5 6, (c) k 5 12, (d ) k 5 24, (e) k 5 36, ( f ) k � 2 .
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matching derivatives along triangle edges (� gure 2(c)) (Watson 1992). Notice that
there is the degenerate condition of the Delaunay triangulation for any square
gridded lattice. This is because each four adjacent points of the lattice have two
possible triangulations satisfying the empty circle criterion. This well-known problem
can be prevented easily by inserting a minor random displacement into each datum
(Watson 1992).

Cross-sections A–A and B–B were constructed through the jump discontinuities
(� gures 2(b) and (c)).

2.3. Results and discussion
On an elevation map produced by the Delaunay triangulation with a smooth

interpolation, one can see three marks (‘knolls’) of the Gibbs phenomenon around
the false elevation (� gure 2(c)). With the exception of a small ‘pit’, the elevation map
does not demonstrate marks of the Gibbs phenomenon along the scarp due to the
large contour interval (� gure 2(c)). At the same time, there are no marks of the Gibbs
phenomenon on an elevation map produced by the Delaunay triangulation with a
linear interpolation (� gure 2(b)).

A cross-section A–A without features of the Gibbs phenomenon is presented on
� gure 2(d ). It relates to the DEM produced by the Delaunay triangulation with a
linear interpolation (� gure 2(b)). At the same time, there are artefacts of the Gibbs
phenomenon on a cross-section A–A corresponding to the DEM produced by the
Delaunay triangulation with a smooth interpolation (� gure 2(c)). These are over-
and undershoots to the left and to the right of the jump discontinuity (� gure 2(e)).
So, two ‘landforms’ arose due to the Gibbs phenomenon after a smooth interpolation:
the ‘bank’ is along the edge, and the ‘ditch’ is along the foot.

A cross-section B–B without marks of the Gibbs phenomenon is presented on
� gure 2( f ). It relates to the DEM produced by the Delaunay triangulation with a
linear interpolation (� gure 2(b)). At the same time, there are two marks of the Gibbs
phenomenon on a cross-section B–B corresponding to the DEM produced by the
Delaunay triangulation with a smooth interpolation (� gure 2(c)). These overshoots
are part of the ‘bank’ around the ‘hole’ connected with the false elevation of Õ 100 m
(� gure 2(g)).

The results (� gure 2) demonstrate that the Gibbs phenomenon can arise after a
smooth interpolation rather than a linear one.

DEM errors caused by the Gibbs phenomenon can propagate through the
processing and produce new errors in DTMs derived from a DEM. Errors in digital
models of the local topographic attributes (Appendix) can arise around areas marked
by the Gibbs phenomenon. In this case, a manifestation of the Gibbs phenomenon
may be increased since the derivation of these DTMs is carried out with calculation
of the � rst and second derivatives of the elevation function (Appendix). It is well
known that diVerentiation of a signal can increase noise (§ 3.1). Errors in digital
models of speci� c catchment area and a topographic and stream power indices can
arise in each point located downslope from the Gibbs phenomenon rather than near
jump discontinuities only. This is because these topographic variables accumulate
their values downslope. As vertical errors adversely aVect determination of � ow-
path direction (Veregin 1997), the Gibbs phenomenon can disturb a design of
drainage network maps.

Since the Gibbs phenomenon takes place near a jump discontinuity after DEM
interpolation by some functions, and the size of over- and undershoots is proportional
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derivation. These over- and undershoots may assist the operator to � nd and eliminate
these errors.

The fourth option may be carried out with some kind of special � ltering proced-

ures, such as the Fejer averaging and the Lanczos local averaging (Jerri 1998). In
this case, the Gibbs phenomenon may be eliminated or reduced since these � lters
smooth edges of jump discontinuities. However, to do this, the exact location of
jump discontinuities must be known. Also, it is doubtful if these � ltering procedures
are adapted for digital terrain modelling and available in GIS- or DTM-compatible

software.
All four ways to prevent or reduce DEM errors caused by the Gibbs phenomenon

are rather complex and laborious (excluding linear interpolation) . The choice of
method depends on the user quali� cation and available tools.

3. Errors in DTM derivation from DEMs with ‘enhanced’ resolution due to noise
increase after DEM diVerentiation
3.1. Problem statement

Discretisation or sampling of a continuous function and its subsequent recon-
struction from a discrete function or sampled points by interpolation are typical
procedures of digital signal and image processing (Rosenfeld and Kak 1982, Jähne
1991, Mitra 1998). According to the Kotelnikov–Shannon sampling theorem, a one-

dimensional continuous bandlimited function y 5 f (x) with a bandwidth v can be
completely determined by a set of samples f (kDx) if the sampling interval, Dx < 1/2v,
Õ 2 < k < 2 (Benedetto and Ferreira 2000). An extension of the sampling theorem
to a two-dimensional case holds that a continuous bandlimited function z 5 f (x, y)

with bandwidths v
x

and v
y

can be determined by a set of samples f (kDx, lDy) if
sampling intervals Dx < 1/2v

x
and Dy < 1/2v

y
, Õ 2 < k, l < 2 . In other words, it is

possible to reconstruct a continuous function from a discrete one if at least two
samples per the shortest wavelength l

x,y
were collected, l

x,y
5 1/v

x,y
(Rosenfeld and

Kak 1982, Jähne 1991). Practically, to avoid ambiguity in reconstruction of a function

due to limitations of the sampling theorem and interpolation eVects (e.g., the Gibbs
phenomenon–§ 2.1), it is advisable to use a multiplicative factor n 5 (2[ 10) to
determine sampling intervals Dx < l̃

x
/2n and Dy < l̃

y
/2n (Grigorenko 1998).

DEM generation is a discretisation of a two-dimensional function of the landsur-

face elevation (MakarovicÊ 1973, 1976, 1977, Mark 1975, Stefanovic et al. 1977, Carter
1988). As in the case of any actual signal, the landsurface spectrum is unlimited, so
the condition of the sampling theorem is not met (Baker 1982, Robinson 1994,
Grigorenko 1998). This is a tractable problem because a user is usually interesting

to study landsurface elements with typical sizes not smaller than threshold short
wavelengths l̃

x,y
(Mark 1975). So, it is possible to consider, in each given case, that

the landsurface elevation is bandlimited function with bandwidths ṽ
x,y

.
The sampling theorem, as applied to digital terrain modelling, has three obvious

consequences:

1. To keep information on short wavelength features of the landsurface with

typical planimetric sizes l̃
x,y

in a DEM, one should use sampling intervals
Dx < l̃

x
/2n and Dy < l̃

y
/2n, or w < l̃

x,y
/2n for square-gridded sampling (Mark

1975). Then a spatial resolution of the DEM corresponds to l̃
x,y

. This is a
resolution limit of the DEM and all DTMs derived from this DEM.
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2. Using interpolation, it is impossible to attain a spatial resolution of an inter-
polated DEM higher than the resolution of the DEM before interpolation. In
other words, it is impossible to reconstruct landsurface features with typical
sizes less than l̃

x,y
. A formal DEM resolution may clearly be ‘enhanced’ by

interpolation using w% Dx, Dy, but this procedure cannot improve an actual
DEM resolution (Stefanovic et al. 1977, Horn 1981, Sasowsky et al. 1992 ).

3. DEM features with typical planimetric sizes less than l̃
x,y

generated by inter-
polation should be considered as high-frequency noise caused by properties
of an interpolation method.

This high-frequency noise may not be clearly seen in elevation maps derived
from DEMs with ‘enhanced’, or over-detailed resolution. This is because the vertical
magnitude of the noise may be too small compared with a contour interval. However,
these minor false ‘landforms’ may be dramatically increased in subsequent pro-
cessing of the DEM, such as derivation of topographic variables using diVerentiation
procedures (Appendix).

It is common knowledge of signal and image processing that diVerentiation of a
signal increases noise manifestation in a derivative (Baker 1982, Rosenfeld and Kak
1982, Jähne 1991). Sometimes, the noise may not manifest itself clearly in the signal,
however it may be accented in the derivative. So, diVerentiation can impair the
signal-to-noise ratio. Generally, the noise can be marked by a relatively large derivat-
ive compared to the signal since the noise is less ‘smooth’ than the signal, and can
� uctuate more randomly than the signal.

The higher the order of the derivative the higher the noise manifestation. The
following example can clarify this for the one-dimensional case (� gure 3). For an
edge in the signal, the � rst derivative has one extremum (a peak or a pit), while the
second derivative has two extrema (a peak and a pit). Also, for a peak or a pit in
the signal, the � rst derivative has two extrema (a peak and a pit), while the second
derivative has three extrema (a peak surrounded by two pits or a pit surrounded by
two peaks) (� gure 3).

Derivation of local topographic variables from DEMs is carried out using the

Figure 3. DiVerentiation of a one-dimensional signal; broken rectangles indicate zones of an
edge (I), a pit (II), and a peak (III ) of the signal.



I. V. Florinsky484

� rst and second partial derivatives of the elevation function (Appendix). As each
DEM includes noises (i.e. random and systematic errors), so their propagation with
magni� cation due to diVerentiation is typical for digital terrain modelling. Some
aspects of this kind of DTM error have been discussed previously (Brown and Bara
1994, Giles and Franklin 1996, Desmet 1997, Wise 1998).

It was established that over-detailed DEM interpolation may lead to some
problems in subsequent derivation of G due to the roundoV (quantisation) noise in
the elevation matrix (Horn 1981, Sasowsky et al. 1992). Also, scholars noticed errors
typical of DEMs with ‘enhanced’ resolution, such as terraces, ‘traces’ of contours
and triangular patterns (§3.3) (Batson et al. 1975, Wood and Fisher 1993, Eklundh
and MaÃ rtensson 1995, Desmet 1997). However, they explained the artefacts observed
by problems in interpolation methods, and did not associate them with over-detailed
resolution of DEMs.

In the next section, we discuss errors in models of local topographic attributes
derived from DEMs with over-detailed resolution due to noise increase after DEM
diVerentiation.

3.2. Materials and methods
An irregular DEM of the part of the Crimea and adjacent sea bed was compiled

by digitising � ve 1:300 000 and 1:500 000 scaled topographic maps (Central Board
of Geodesy and Cartography 1953, General Headquarters 1986). The area measures
210 km Ö 132 km. The irregular DEM includes 11936 points (� gure 4(a)). DiVerent
parts of the DEM (e.g. the sea bottom, mountains and plain) are marked by diVerent
densities of points. Using the inverse distance weighting interpolation of the irregular
DEM (Watson 1992), we produced two regular DEMs with w 5 500 m (� gure 4(b))
and w 5 3000 m.

Application of w 5 500 m gives an ‘enhanced’ resolution, since this w value is less
than the average distances between points within all parts of the irregular DEM
(� gure 4(a)). The grid size of 3000 m approximately corresponds to average distances
between points within the Black and Azov Sea bed and some areas of the Crimean
Plain (� gure 4(a)). The Crimean Mountains can be treated with a smaller grid size,
such as 1000 m, but we need to apply one grid size � tting all parts of the DEM.

An irregular DEM of the Severny Gully (Pushchino, Russia) was compiled by a
tacheometric survey. The site measures about 58 m Ö 77 m. The irregular DEM
consists of 374 points (� gure 5(a)). Using the Delaunay triangulation and a piecewise

quadric polynomial interpolation with matching derivatives along triangle edges
(Watson 1992), we produced two regular DEMs with w 5 0.25 m (� gure 5(b)) and
w 5 3 m.

Application of w 5 0.25 m certainly gives ‘enhanced’ resolutions since this w value
is much less than the average distances between points of the irregular DEM

(� gure 5(a)), whole grid size of 3 m approximately equals the average distances
between points of the irregular DEM (� gure 5(a)).

Digital models of G (� gures 4(c, d ) and 5(c, d )), k
v

(� gures 4(e, f )) and k
h

(� gures 5(e) and ( f )) were derived from the regular DEMs of the Crimea and the

Severny Gully by the method of Evans (1980) (Appendix).
To sharpen artefacts on the k

v
and k

h
maps derived from DEMs with ‘enhanced’

resolution, we produced ‘binary maps’ of k
v

and k
h
, that is, we subdivided k

v
and k

h
values into two intervals with respect to the zero value (� gures 4(e, f ) and 5(e, f ).
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the artefacts is evidently lack of information about elevations between triangulation
nodes at the resolution of w 5 0.25 m for the given DEM.

The inaccuracies discussed lead to relatively minute errors in the regular DEMs
with over-detailed resolution. At least, it is impossible to see them on the elevation
maps (� gures 4(b) and 5(b)). Therefore, one can ignore these artefacts in some cases:
for example, an elevation map derived from a DEM with ‘enhanced’ resolution can
be used for illustration goals. However, these errors are dramatically increased after
derivation of G, k

v
and k

h
as they are calculated by diVerentiation (Appendix). The

same errors may be identi� ed in maps of A, H, K and R since they are also derived
from elevation derivatives (Appendix).

There are several ways to avoid these artefacts. First, it has been suggested that
more sophisticated and smooth interpolation techniques should be used to prevent
formation of terraces in DEMs (Eklundh and MaÃ rtensson 1995), contour traces on
G, A, k

v
and R maps (Batson et al. 1975, Wood and Fisher 1993, Desmet 1997) and

triangle patterns on G and A maps (Desmet 1997). Second, Eklundh and MaÃ rtensson
(1995) proposed generalizing contours to prevent terraces in DEMs. Third, high
frequency � ltering and smoothing is applied before diVerentiation to reduce a level
of the high-frequency noise in signal and image processing (Baker 1982, Rosenfeld
and Kak 1982, Jähne 1991). Close � ltering procedures are used in digital terrain
modelling to smooth the high-frequency noise in DTMs derived from DEMs (Horn
1981) or in DEMs before derivation of DTMs (Brown and Bara 1994, Giles and
Franklin 1996, Desmet 1997, Wise 1998, 2000).

All these ways may improve results of DEM interpolation and hide a structure
of an irregular DEM network. However, this cannot clearly increase an actual
resolution of a DEM (conversely, the second option can decrease it). It is incorrect
to use DEMs with ‘enhanced’ resolution for DTM derivation because an over-
detailed resolution of a DTM does not relate to actual features of the landsurface
kept in a DEM before interpolation. Treating the DTM beyond a resolution limit
can lead just to an abstract investigation of a geometry of a matrix of interpolated
values z 5 f (x, y) rather than a geometry of the landsurface.

Common sense guides us to suppose that this is the only appropriate solution
of the problem. Since a spatial resolution of an irregular DEM corresponds to l̃

x,y
,

one should use w relating, at least, to l̃
x,y

in DEM interpolation, if an interpolated
DEM will be then treated for derivation of DTMs. Practically, a value of this w
should relate to an average distance between points in the irregular DEM. Other
values of w chosen from study task considerations (Florinsky 1996, Florinsky and
Kuryakova 2000) should be more than this minimal w. In this case, it is possible to
prevent errors in DTM derivation from DEMs with ‘enhanced’ resolution due to
noise-increase after DEM diVerentiation, as the results demonstrate (� gures 4(d, f ),
5(d, f )). This principle of choosing w for derivation of DTMs from DEMs should
be considered as a complementary rule with respect to known requirements for
choosing sampling intervals in the generation of irregular DEMs (MakarovicÊ 1973,
1976, 1977, Stefanovic et al. 1977, Ayeni 1982, Sasowsky et al. 1992 ).

4. Errors in DTM derivation caused by the displacement of DEM grid
4.1. Problem statement

As we have mentioned in §3.1, discretisation of a signal or image and its recon-
struction from sampled points are typical procedures of digital signal and image
processing (Rosenfeld and Kak 1982, Jähne 1991, Mitra 1998). It is obvious that
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somewhat diVerent sets of points can be sampled using diVerent positions of a
discretisation grid about the original signal or image. Subsequently, one can produce
slightly diVerent reconstructions of the signal or image for diVerent positions of the
discretisation grid. As a rule, these minor discretisation errors show as a high-
frequency noise, and in most cases one may ignore them. However, they may be
increased in secondary products derived from these slightly diVerent signals or images
using diVerentiation (§3.1) (Zlatopolsky 1992).

Discretisation of the two-dimensional function of the landsurface elevation is a
key procedure of digital terrain modelling (MakarovicÊ 1973, 1976, 1977, Stefanovic
et al. 1977). It is well known that the geometry of a DEM grid aVects design of
maps of topographic variables (Mark 1975, Carter 1988, Robinson 1994, Wilson
et al. 1998). It is also apparent that slightly diVerent DEMs of the same area can be
produced by displacement (in a general case, by rotation) of a grid of points wherein
elevation values were interpolated, or determined by a topographic survey or a
photogrammetric procedure. We mean that the geometry of an irregular grid or w
of a regular grid remains constant, grid position and/or orientation changes only.
These DEMs can be marked by minor diVerences, but all of them may be used to
describe the area. Sometimes, grid displacement may improve DEM accuracy:
Endreny et al. (2000) found that rotation of a SPOT-derived DEM about the axis
can improve the root mean square error of the DEM.

The following question arises: what diVerences could be found in digital models
of a topographic attribute derived from a DEM after displacement of a DEM grid?
In other words, how does displacement of a DEM grid, wherein elevations are
interpolated or determined, in� uence derivation of topographic characteristics? This
problem has only been touched on in previous works. For example, it was established
that the rotation of grid points where elevations are determined may lead to 13%
odds in values of a topographic volume calculated for earthworks (Sirotkin 1961).
Of particular interest is the in� uence of diVerent positions or orientations of a DEM
grid on the DTM-based identi� cation of topographically expressed geological fea-
tures. Their indicators are linear elements in design of maps of some topographic
attributes (Florinsky 1996, 1998b). Tolerance of the identi� cation procedure to DEM
grid displacement is not understood.

In the next section, we discuss the in� uence of displacement of a regular grid of
a DEM on design of maps of two topographic variables used in geological studies.

4.2. Materials and methods
An area measuring 172 km Ö 143 km of the interstream area of the Kuma and

the Kalaus Rivers (Stavropol Region, Russia) (� gure 6(b)) was studied. An irregular
DEM was compiled by digitising the 1:1 000 000 scaled topographic map (Central
Board of Geodesy and Cartography 1968). Elevations were captured by parallel
strips at critical points of the landsurface (� gure 6(a)). The irregular DEM includes
4459 points.

Using the Delaunay triangulation and a piecewise quadric polynomial interpola-
tion with matching derivatives along triangular edges (Watson 1992), we produced
three regular DEMs with w 5 2500 m. Regular grids of these DEMs have distinct
orientations relative to the irregular DEM: rotation angles of the reference axes of
the regular grid are 0 ß , 25 ß , and 90ß in an anti-clockwise direction in relation to the
reference axes of the irregular grid (� gure 7).

The regular DEM rotated by 90ß is diVerent from the regular DEM rotated by
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Figure 7. Rotation of the regular grid of the DEM.

DEM from the irregular one. However, the zero of the Cartesian co-ordinate system
was displaced after the rotation through 90ß : it related to the lower left corner of
the area before the rotation, and it moved to the lower right corner after the rotation
(� gure 7). So, we lost an eastern boundary strap of width 2 km in the DEM rotated
by 0 ß , and a western boundary strap of width 2 km in the DEM rotated by 90 ß (and
a northern boundary strap of width 0.5 km in both DEMs). Therefore, here the
rotation of the regular grids through 90 ß is equivalent to the displacement of the
regular grids along the X-axis by 2 km.

Digital models and maps of k
h

and k
v

(� gures 8 and 9) were derived from the
three regular DEMs by the method of Evans (1980) (Appendix). We subdivided k

h
and k

v
values into two intervals with respect to the zero value, because this type of

presentation of k
h

and k
v

data is used for lineament and fault identi� cation (Florinsky
1996, 1998b) .

4.3. Results and discussion
Visual comparative analysis of the results demonstrates that the DEM rotation

leads to identi� cation of slightly diVerent topographic patterns. Although the k
h

and
k
v

maps derived from the variously oriented DEMs have many similarities, they also
include a number of distinctions (� gures 8 and 9). In particular, some patterns break
or merge, and some patterns change their width and length. Most patterns retain
their position. However, small dots, narrow lines and small particles of big patterns
appear and disappear on maps. Notice that typical sizes of these patterns are less
than w. Therefore, they � t into a high-frequency noise (§3.1). Also, there are minor
changes in value intervals of k

h
and k

v
(� gures 8 and 9).

These artefacts are manifestations, within certain limits, of DEM discretization
errors (§4.1) increased by diVerentiation used in calculation of k

h
and k

v
(Appendix,

§3.1). This is analogous to eVects arising in lineament identi� cation by digital
processing of remotely sensed images: parts of linear structures can appear and
disappear due to the image rotation in relation to the discretisation grid (Zlatopolsky
1992). It is not possible to prevent these eVects completely because digital terrain
modelling is a transformation of discrete functions describing the continuum of the
topographic surface with a given level of accuracy (§3.1).

It is possible to observe that some patterns slightly alter their form and orientation
according to the rotation of the regular grid in the central part of the studied area
(� gures 8 and 9). This is in� uenced by the discrete geometry of the square-spaced
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DTM grid on a map design: the bigger w of the grid, the stronger manifestation of
the raster, and the more signi� cant changes may be found in a map design after
displacement of the grid. We may suppose that k

h
is more sensitive to the discrete

geometry of the grid than k
v
, since changes in pattern orientation on the k

v
map are

less than on the k
h

map (� gures 8(b) and 9(b)). However, most of patterns retain
their orientation after rotation (� gures 8 and 9). So, although some patterns of these
maps are aVected by the displacement of the grid, the eVect is not dramatic.

However, changes in a map after rotation of a regular DEM grid may be more
composite. In addition to discretisation errors and the in� uence of the discrete
geometry of the grid, these changes may be caused by possible anisotropy of operators
for derivation of topographic variables as well as moral anisotropy of interpolation.
It is hard to separate the eVects of these causes, especially as anisotropy of operators
of topographic variables has not been studied (this is a subject of further work).

Practically, to separate artefacts from actual topographically expressed geological
structures and to avoid misinterpretation, one may derive a set of k

h
and k

v
models

from regular DEMs with distinct orientations relative to an irregular DEM. Map
patterns indicate actual structures if they can be found on all k

h
or k

v
maps. Other

image patterns may be assumed as artefacts.
Notice � nally that the derivation of DTMs from regular DEMs with distinct

orientations may be instructive to test possible arti� cial anisotropy in maps of
topographic variables. This can be bene� cial for DTM-based geomorphic and geolo-
gical studies using G, k

h
, k

v
and R to reveal topographically expressed geological

lineaments and faults (Schowengerdt and Glass 1983, Chorowicz et al. 1989,
Florinsky 1996, 1998b, Collet et al. 2000). Since orientation is an essential attribute
of these features, a possible false anisotropy in their spatial distribution can lead to
misinterpretation. Sometimes, one can reveal near-north-, near-west-, near-
northeast-, and near-northwest-striking structures. This anisotropy in map design
can be a re� ection of the natural anisotropy of topographically expressed geological
structures. Indeed, it has been found that a considerable portion of fractured zones,
lineaments and faults are marked by near-north, near-west, near-northeast , and near-
northwest orientations (Shults 1971, Katterfeld and Charushin 1973, Besprozvanny
et al. 1994). This phenomenon manifests itself at a wide range of scales, and is
observed on the Earth and other terrestrial planets. Topographically expressed
lineaments of a tectonic origin are considered in those papers rather than glacial
landforms. Reasonable hypotheses of tectonic mechanisms responsible for the linea-
ment orderliness were proposed in papers cited. However, these orthogonal and
diagonal linear patterns may also be artefacts caused by geometry of DTM grid,
anisotropic errors of DEM compilation, possible anisotropy of DEM interpolation,
anisotropy of aliasing artefacts, and possible anisotropy of algorithms for DTM
derivation (Florinsky 1993). To separate anisotropic artefacts from actual anisotropic
geological structures, one may derive a set of DTMs from regular DEMs with
distinct orientations. If anisotropic patterns are found on all maps regardless of
DEM orientation, they indicate natural anisotropic structures.

5. Conclusions
This paper presents new interpretations of data processing errors familiar for the

DTM community. The errors cause artefacts that can adversely eVect DTM-based
studies. Explanations of artefact causes and ways to avoid them are carried out in
the context of known elements of the theory of signal processing.
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Figure 8. The interstream area of the Kuma and the Kalaus Rivers: k
h

maps derived from
DEMs with (a) 0ß -; (b) 25ß -; (c) 90 ß -rotation of the regular grid.

As Pike (2000) has noted, the discipline of digital terrain modelling is a result of
integration of knowledge, principles and methods of earth and computer sciences,
mathematics and engineering. The paper presented clearly demonstrates one aspect
of the relationship between digital terrain modelling and � elds of signal and image
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processing. Three error classes discussed are not peculiar for digital terrain modelling
only. To avoid these errors successfully, it is essential to understand their actual
parents. Broadly speaking, a DTM user should see digital terrain modelling in its
association with other � elds of the science and engineering.

Methods of digital terrain modelling are scale independent. They are applicable
at a broad range of spatial scales (detailed, � eld, catchment, regional, national,
subcontinental and global levels) with equal facility (Pike 2000). Three classes of
DEM errors discussed are scale independent too. They can occur at any DEM scale,
so knowledge of them is important for all DTM-based works.

In the paper we used ordinary interpolation methods and only visual interpreta-
tion of the test results. It might be useful to investigate the artefacts discussed using
more sophisticated interpolation techniques and some kind of statistical analysis of
DTMs. However, this is a subject of future work.

In the study we used the LandLord package (Florinsky et al. 1995) for the
Delaunay triangulation with a piecewise smooth interpolation and the weighted
average interpolation, calculation and mapping of topographic variables (� gures 2,
4–6, 8 and 9). We also used the Surfer (© 1993–96, Golden Software) for the
Delaunay triangulation with a linear interpolation (§2.2). The approximation of the
square-wave function (� gure 1(b–e)) was carried out with the Maple V Release 3.0
for Microsoft Windows (© 1981–94, Waterloo Maple Software, University of
Waterloo) . The illustration of the diVerentiation of the one-dimensional signal
(� gure 3) was produced with the Microsoft Excel 97 (© 1985–97, Microsoft).
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Appendix. Calculation of local topographic variables
Once elevations are given by z 5 f (x, y) where x and y are plane Cartesian

co-ordinates, local topographic variables are functions of the partial derivatives of z
(Shary 1991):

G 5 arctan p2 1 q2 (A1)

A 5 arctanAq

pB (A2)

k
h
5 Õ

q2r Õ 2pqs 1 p2t

( p2 1 q2 ) 1 1 p2 1 q2
(A3)

k
v
5 Õ

p2r 1 2pqs 1 q2t

( p2 1 q2 ) 11 p2 1 q2 )3
(A4)

H 5 Õ
(1 1 q2 )r Õ 2pqs 1 (11 p2 )t

2 (1 1 p2 1 q2 )3
(A5)

K 5
rt Õ s2

(1 1 p2 1 q2 )2
(A6)

where

r 5
‚ 2z

‚ x2
, t 5

‚ 2z

‚ y2
, s 5

‚ 2z

‚ x ‚ y
, p 5

‚ z

‚ x
, q 5

‚ z

‚ y
(A7)
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Re� ectance (R) used for hill shading mapping can be calculated by the following
formula of the Lambertian model (Horn 1981):

R 5
1 Õ pcosh/tany Õ qsinh/tany

1 1 p2 1 q2 11 (cosh/tany)2 1 (sinh/tany)2
(A8)

where h and y are the solar azimuth and zenith angles, respectively.
r, t, s, p and q can be calculated by the method of Evans (1980): the polynomial

z 5
rx2

2
1

ty2

2
1 sxy 1 px 1 qy 1 u (A9)

is approximated by the least squares method to the 3 by 3 square-spaced altitude
submatrix with a grid size of w. Points of the submatrix (Õ w, w, z

1
), (0, w, z

2
),

(w, w, z
3
), (Õ w, 0, z

4
), (0, 0, z

5
), (w, 0, z

6
), (Õ w, Õ w, z

7
), (0, Õ w, z

8
) and (w, Õ w, z

9
)

are measured plane Cartesian co-ordinates and elevations of the landsurface. As a
result, one can estimate values of r, t, s, p and q at the point (0, 0, z

5
) by the following

� nite-diVerence approximation formulae:

r 5
z1 1 z3 1 z4 1 z6 1 z7 1 z9 Õ 2(z2 1 z5 1 z8 )

3w2
(A10)

t 5
z1 1 z2 1 z3 1 z7 1 z8 1 z9 Õ 2(z4 1 z5 1 z6 )

3w2
(A11)

s 5
z3 1 z7 Õ z1 Õ z9

4w2
(A12)

p 5
z3 1 z6 1 z9 Õ z1 Õ z4 Õ z7

6w
(A13)

q 5
z1 1 z2 1 z3 Õ z7 Õ z8 Õ z9

6w
(A14)

Moving the 3 by 3 submatrix along a regular DEM, one can calculate values of r,
t, s, p and q for all points of the DEM, excepting boundary points.

De� nitions, physical interpretations and examples of application of the local
topographic attributes can be found in Florinsky (1998a) .
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