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Artificial Lineaments in Digital Terrain Modelling:
Can Operators of Topographic Variables
Cause Them?!

Igor V. Florinsky?>>*

Digital terrain modeling is widely used in geological studies. In some cases, orthogonal and diagonal
linear patterns appear on maps of local topographic variables. These patterns may be both portrayals of
geological structures and artefacts. Some researchers speculated that possible anisotropy of operators
of local topographic variables might be a cause of these artefacts. Using a principle for testing
derivative operators in image processing, we gave proof to isotropy (rotation invariability) of operators
of a majority of local topographic attributes of the complete system of curvatures (i.e., slope gradient,
horizontal curvature, vertical curvature, mean curvature, Gaussian curvature, accumulation curvature,
ring curvature, unsphericity curvature, difference curvature, minimum curvature, maximum curvature,
horizontal excess curvature, and vertical excess curvature). Rotating an elevation function about z-axis
and then applying these operators cannot lead to variations in both values of the topographic variables
and patterns in their maps, comparing with results of applying these operators to an unrotated elevation
Sfunction. This demonstrates that linear artefacts with preferable directions in maps of the topographic
attributes specified cannot be caused by intrinsic properties of their operators. Other possible sources
for false linear patterns in maps of topographic variables are briefly discussed: (a) errors in the
compilation of digital elevation models (DEMs), (b) grid geometry of digital terrain models (DTMs), (c)
errors in DEM interpolation, (d) imperfection of algorithms for DTM derivation, and (e) aliasing errors.
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INTRODUCTION

It is well known that topography is one of the key indicators of geological struc-
ture at wide range of scales. For the last four decades, this has led to widespread
use of digital terrain modeling in geology. Digital terrain modeling is a sys-
tem of quantitative methods to model and analyze the land surface and rela-
tionships between the topography and geological, hydrological, biological, and
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Table 1. Definitions of Local Topographic Variables the Complete System
of Curvatures (Shary, 1995)

Variable and unit Definition
Slope gradient (G) (°) An angle between a tangent plane and a horizontal
one at a given point on the land surface.
Slope aspect (A) (°) An angle clockwise from the direction of y-axis to a

projection of an external normal vector to a
horizontal plane at a given point on the land
surface.

Vertical curvature (ky) (m~") A curvature of a normal section of the land surface
by a plane, including gravity acceleration
vector at a given point.

Horizontal curvature (k) (m™!) A curvature of a normal section of the land surface
which is orthogonal to the section of vertical
curvature at a given point on the land surface.

Gaussian curvature (K) (m~2) A product of maximum curvature and minimum
curvature.

Mean curvature (H) (m~!) A half-sum of curvatures of two orthogonal normal
sections of the land surface at a given point.

Difference curvature (E) (m~") A half-difference of vertical and horizontal
curvatures.

Accumulation curvature (K,) (m~2) A product of vertical and horizontal curvatures.

Unsphericity curvature (M) (m~!) A half-difference of maximum and minimum
curvatures.

Ring curvature (K;) (m~2) A product of horizontal excess and vertical excess
curvatures.

Horizontal excess curvature (kpe) (m~1) A difference of horizontal and minimum curvatures.

Vertical excess curvature (kye) (m™1) A difference of vertical and minimum curvatures.

Minimum curvature (kpin) (m~") A curvature of a normal section with the smallest

value of curvature among all normal sections at a
given point of the land surface.

Maximum curvature (kmax) (m 1) A curvature of a normal section with the largest
value of curvature among all normal sections at a
given point of the land surface.

Note. Physical interpretations and examples of application of local topographic attributes can be found
elsewhere (Florinsky, 1998b; Shary, Sharaya, and Mitusov, 2002).

anthropogenic components of the landscape (see reviews—Moore, Grayson, and
Ladson, 1991; Florinsky, 1998b; Pike, 2000). In geology, digital terrain modeling
can be used to study not only the land surface, but also surfaces of stratigraphic
horizons or geological structures (McCullagh, 1988). By digital terrain models
(DTMs) are meant digital representations of variables describing the topographic
and geological surfaces; namely, digital elevation models (DEMs), digital mod-
els of local topographic variables (Tables 1 and 2) and other geomorphometric
indices.



Table 2. Formalism of Local Topographic Variables (Shary, 1995; Shary, Sharaya, and Mitusov, 2002)

Variable and unit Formula
Slope gradient (G) (°) G = arctan/p? + ¢2
Slope aspect (A) (°) A = arctan (%)
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Vertical excess curvature (kye) (m~") kve =ky —kmin =M + E
Minimum curvature (kmin) (m~!) kmin=H — M
Maximum curvature (kpax) (m™") kmax = H+ M
Note. p= %, g =%, r=2% 5= 2% and 1 = 2% for the elevation given by z = ;xandy ¢
P =404 = g5y T = 5550 S = 3y, and £ = 555 for the elevation given y z = f(x,y); x and y are

Cartesian co-ordinates. p, ¢, r, s, and ¢ can be calculated by various methods (see formalism elsewhere—
Florinsky, 1998a). For example, in the Evans method, the following formulae are used to estimate p, ¢, r, s,
and 7 at the point (0, 0, z5) of a 3 x 3 elevation submatrix [(—w,w,z1), (0,w,22), (W,w,z3), (—w,0,24), (0, 0, z5),
w,0, z6), (—w,—w,z7), (0, —w,z3), (W,—w,z9)] moved along a square-gridded DEM:
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To reveal folds, faults, and ring structures, two well-known mathematical
procedures, trend-analysis and spatial filtering, have been frequently utilized to
process both DEMs of land surface and DEMs of stratigraphic horizons (Robinson,
Charlesworth, and Ellis, 1969; Gosteva, Patrakova, and Abramkina, 1983). Wladis
(1999) applied a geophysical method of second derivative filtering to a land surface
DEM for revealing geological lineaments.

There are approaches involving an analysis of digital models of geomor-
phometric indices derived from land surface DEMs, such as summit level, base
level, and relative relief (highest altitude, lowest altitude, and difference between
them for a given area, correspondingly). These digital models were used to reveal
active tectonic structures (Ioffe and Kozhurin, 1997), to recognize palaeosurfaces
(Johansson, 1999), to estimate seismic activity (Zamani and Hashemi, 2000),
and to study the interaction between endo- and exogenic processes of orogenesis
(Kiihni and Pfiffner, 2001).

Digital reflectance mapping (hillshading) based on the processing of land
surface DEMs is widely used to highlight topographically expressed geological
structures (Chorowicz, Dhont, and Giindogdu, 1999). Superposition of geolog-
ical time data on hillshading maps can improve the perception of relationships
between geological and geomorphic features (Vigil, Pike, and Howell, 2000).
Three-dimensional simulation using DEMs of the land surface and geological
surfaces is also commonly used to visualize clearly the structure of landscapes
together with geological strata, and to measure parameters of geological objects
(Morris, 1991).

Geological applications of local topographic variables (Tables 1 and 2) are
less common. Belonin and Zhukov (1968) studied an uplift evolution analyzing
level, direction and unevenness of stretching and bending of several conformable
stratigraphic surfaces using their K, H, ki, and kp.x. Chorowicz and others
(1989) developed a method to recognize lithological boundaries using G, A and
drainage/divide lines derived from a land surface DEM. k;, and &, of the land surface
were used to reveal topographically expressed lineaments and ring structures
(Florinsky, 1993), and to distinguish strike-slip, dip-slip, and reverse faults at a
regional scale (Florinsky, 1996, 1998c). This method was also applied to reveal
faults of several conformable stratigraphic horizons using DEMs of their surfaces
(Florinsky, Grokhlina, and Mikhailova, 1995). Lisle (1994) used K of geological
surfaces to analyze fracture densities and strains of individual structures. Samson
and Mallet (1997) proposed using knin and kn,x of geological surfaces to highlight
hidden folding and faulting zones. K, and H of the land surface were applied to
investigate relationships between sites of fault intersection and land surface zones
of flow accumulation (Florinsky, 2000).

When DTMs of local topographic variables are used to reveal lineaments
and faults, indicators of these structures are linear patterns in maps of these
variables (Fig. 1). Every so often near-north-, near-west-, near-northeast-, and



Artificial Lineaments in Digital Terrain Modelling 361

near-northwest-striking linear patterns are observed in the maps. Although these
orthogonal and diagonal lineaments can be a reflection of topographically ex-
pressed geological structures, they may also be artefacts. There are several possi-
ble causes of them (Florinsky, 1993): (a) the geometry of the DTM grid, (b) errors

143° Ky kyx0] | 100 ke g

Figure 1. Canada and adjacent territories: maps of A, land surface kp,, and B, land surface k. These
10-arc-min gridded digital models of &k and &, each including 151,525 points were derived from
a DEM by the method of Florinsky (1998c) using LandLord software (Florinsky, Grokhlina, and
Mikhailova, 1995). The 10-arc-minute gridded DEM including 153,182 points was extracted from
the ETOPOS5 DEM (NOAA, 1988). Maps were visualized by ArcView GIS 3.0a (©1992-1997,
ESRI). Lineaments are indicated by arrows: 1 is an example of artefacts due to errors of DEM
compilation (see Results and Discussion for details), while 2, 3, 4, and 5 are examples of geological
faults established earlier using conventional geological methods (Douglas, 1974; Sheridan, 1989).
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in the DEM compilation, (c) errors in the DEM interpolation, (d) aliasing errors,
(e) imperfection of algorithms for DTM derivation, and (f) anisotropy of operators
of local topographic variables (see Results and Discussion for details). Orientation
is an essential attribute of geological features, so possible false linear patterns on
maps can lead to geological misinterpretation. To prevent this and to gain insight
into methods and algorithms of digital terrain modeling, it is important to investi-
gate causes responsible for artificial patterns of preferable direction in models and
maps of topographic attributes. In this paper, we dwell on the question of whether
operators of local topographic variables are isotropic.

It is common knowledge of the theory of image processing that derivative
operators for transformation of two-dimensional signals may be isotropic and
anisotropic (Rosenfeld and Kak, 1982). By isotropic operators are meant rotation
invariants: rotating a function z = f(x, y) by an angle ¢ about z-axis and then
applying an operator 2 to z = F(x’, y’) gives the same result as applying Q to
7z = f(x, y) and then rotating a result by the angle ¢ about z-axis; F(x’, y') =
f(x,y), x,yand x’, y’ are the unrotated and the rotated Cartesian co-ordinates,
correspondingly. An operator is anisotropic if this condition is not met. An example
of isotropic operators is the Laplacian, while anisotropic operators are typified by
compass operators measuring gradients in several directions.

Deriving a digital model of a local topographic variable / from a DEM by a
related formula (Table 2) can be considered as applying an operator €2 of the vari-
able / to an elevation function z. The operator 2 transforms the elevation function
z = f(x,y) into the function of the local topographic variable I = v¥(x, y), or,
what is the same—the DEM into the digital model of /.

Local topographic variables are functions of the first and second partial
derivatives of elevation (Table 2). It would be reasonable to suggest that operators
of these variables may also be isotropic or anisotropic. In spite of the importance of
this question to digital terrain modeling, previous statements about rotation invari-
ability of local topographic attributes were done without proof (Shary, Sharaya,
and Mitusov, 2002). Indeed, it may be self-evident that local topographic vari-
ables, except A, are independent of the orientation of x- and y-axes if one will
take a closer look at their definitions (Table 1). All these attributes, except A,
are associated with directions related to intristic properties of the surface rather
than orientation of the co-ordinate axes. However, although DTM-users are ac-
quainted with physical interpretations of topographic attributes, they are usually
not familiar with differential geometry. The author’s experience shows that some
researchers prefer to ascribe an occurrence of linear patterns of preferable direc-
tions in maps of local topographic variables to probable anisotropic properties of
their operators, and to ignore arguments against this conclusion following from
definitions of these variables (Table 1). This suggests that there is a need to present
an alternative proof of the isotropy for operators of local topographic variables.
This is the objective of the paper.
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MATHEMATICAL TREATMENT

To prove the isotropy of operators of local topographic variables of the
complete system of curvatures (Tables 1 and 2), we applied a principle for testing
derivative operators in image processing (Rosenfeld and Kak, 1982, p. 238).

First, let us derive the first and second partial derivatives of z = F(x’, y’),
thatis, p’, q’, r', s’,and ¢, given in terms of the first and second partial derivatives
of z = f(x, ), thatis, p, ¢, r, s, and ¢ (Table 2). After applying the chain-rule of
a change of the independent variables in differentiation of compound functions
(Fikhtengolts, 1966; Courant and John, 1974), simple algebraic operations, and
substitutions of the well-known expressions of co-ordinate rotation

x =x' cos ¢ —y' sin @, (1)

y =x'sin ¢ + y' cos @, ()

we obtained the following formulae:

, BZ 31 0x aZ 8y + . (3)
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As p#£p,q#q,r#r', s#s', and t # ', these partial differential
operators are not rotation invariants.

Second, let us define G, A, ky, ky, and K (Table 2) for the case of rotated
Cartesian co-ordinates, that is, in terms of p’, ¢’, 7/, s’, and ¢’ [Egs. (3)—(7)]. After
substitutions and simple algebraic operations, we obtained the formulae:
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(8)

, o
A’ = arctan <q_) = arctan (q e p s%n go) ©)
)24 p COS ¢ +¢g sin @

q/2r/ _ zplq/s/ + p/2t/

ky, = —
(p/2+q/2) 1+p/2+q/2

=~

= { — (g cos ¢ — p sin @)*(r cos® ¢ + 25 cos ¢ sin ¢ + ¢ sin® @)
—2(p cos ¢ + g sin @)(g cos ¢ — p sin @){(t —r) cos ¢ sin ¢ + s(cos® ¢
—sin® @)} + (p cos ¢ + g sin ¢)*(r sin* ¢ — 25 cos ¢ sin ¢ + ¢ cos’ (p)}/

{[(p cos ¢+ sin ) + (g cos ¢ — p sin ¢)’]

x+/1+ (p cos ¢ + ¢ sin @)% + (g cos ¢ — p sin ¢)?}



Artificial Lineaments in Digital Terrain Modelling 365
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Comparing the formalism of G’, ky , k;,, A" and K’ for the rotated co-ordinates
[Eqgs. (8)—(12)] with the corresponding formalism for the unrotated co-ordinates
(Table 2), itis possible to see that G’ = G, A" # A,k = kn, k|, = ky,and K’ = K.
These mean that operators of G, ky, ky, and K are isotropic, while the operator of
A is anisotropic.

H, E, and K, can be expressed by the combinations of &, and k, (Table 2).
Since operators of ky, and k, are isotropic [Egs. (10) and (11)], operators of H, E,
and K, are isotropic too:

1 1

H' = S(k + k) = 5+ k) (13)

E =t — k) = Lo — k) (14)
- 5 v h — ) v h

K| = Kk, = knky (15)
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M can be expressed by the combination of K and H (Table 2). Since their
operators are rotation invariants [Eqgs. (12) and (13)], so the operator of M is also
a rotation invariant:

M =VH? —K' =VH>—K (16)

K, kne, kve can be expressed by the combinations of M and E (Table 2), while
kmin and knax can be expressed by the combinations of M and H (Table 2). As
operators of H, E, and M are isotropic [Eqgs. (13), (14), and (16)], so operators of
K, khe, kve, kmin, and kp,x are isotropic too:

K/ =M?—-E*=M* - E? (17)

kt.=M —E =M —E (18)

k.=M+E =M+E (19)

k.=H —-M=H-M (20)

kw=H +M=H+M 1)
RESULTS AND DISCUSSION

We proved that operators of all local topographic variables of the complete
system of curvatures, except A, are isotropic. This means that (a) rotating an
elevation function about z-axis and then applying operators of G, ky, kv, H, K, K,
K:, M, E, knins kmax» ke, kve, and any of their linear transformations cannot lead to
variations in both values of the variables and patterns on their maps, comparing
with results of applying these operators to an unrotated elevation function, and
(b) application of these operators to DEMs cannot be responsible for the occurrence
of artificial lineaments of preferable orientations in DTMs and maps derived.

Operators of A and its linear transformations are not rotation invariants.
Rotating an elevation function about z-axis and then applying of the operator of A
will lead to variations in both the A values and patterns in A maps, comparing with
results of applying the operator to an unrotated elevation function. It is notable
that, from a formal point of view, this is true for nonspecial points of a surface
only, that is, points marked by p?> + ¢ # 0, or G > 0. For special points of a
surface, that is, p2 + q2 = 0, or G = 0, the operator of A might be considered as
isotropic. However, this is meaningless: A cannot be defined for special points per
se, since the gravity does not mark any direction there (Shary, 1995).

These results were expected as they follow from mathematical definitions of
local topographic variables (Table 1).

To avoid misunderstanding, we should note that a rotation of a regular grid,
wherein elevations are interpolated and/or topographic variables are calculated,
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relative to an initial (irregular) DEM grid leads inevitably to changes of both values
in DTMs and patterns in maps obtained. However, these effects are connected with
discretization errors of an elevation function due to displacement of a DEM grid in
its rotation, regardless to isotropy or anisotropy of an operator applied (see details
elsewhere—Florinsky, 2002).

We presented the proof of isotropy for operators of local topographic variables
of the complete system of curvatures (Shary, 1995) using their rigorous formula
(Table 2). Sometimes, researchers use simplified versions of these expressions. To
check isotropy of simplified operators as well as operators of other morphometric
indices used in geosciences, one may apply the principle described in this paper.

Other Causes for Lineaments on Maps of Local Topographic Variables

Let us briefly review other causes for linear patterns on maps of local topo-
graphic variables (Florinsky, 1993).

Natural Orientation of Landform

It has been found that a considerable portion of topographically expressed
fractured zones, faults, and lineaments of a tectonic origin are marked by near-
north, near-west, near-northeast, and near-northwest orientations (Katterfeld and
Charushin, 1973). This phenomenon manifests itself at a wide range of scales
on the Earth and other terrestrial planets (Fig. 1). Assuming the absence of arte-
facts, this natural topographic anisotropy may be fully responsible for patterns of
preferable orientations in maps of topographic attributes.

Geometry of DTM Grid

Digital terrain modeling usually involves a processing of a surface described
at points arranged in a square or other regular grid. Obviously, visualization of
results of DTM-based analysis, more or less, depends on geometry of this grid (e.g.,
orthogonal and diagonal directions). However, it is possible to ignore an influence
of DTM grid geometry on the appearance of a map using DTMs marked by a
sufficiently high resolution, when a grid raster does not impede visual perception
of a user. It is also obvious that DTM grid geometry can influence not only a
representation of results of DTM-based analysis but this analysis as well (e.g.,
DEM interpolation and DTM computations). These aspects are discussed below.

Errors in DEM Compilation

There are, at least, five groups of systematic errors of DEM compilation
causing artificial linear patterns in maps and DTMs. First, there are linear artefacts
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caused by banding, a by-product of photogrammetric generation of DEMs (Brown
and Bara, 1994). Second, there are abrupt linear altitude steps resulting from
processing an orthophoto as separate patches and subsequently joining them to
assemble a DEM (Hunter and Goodchild, 1995). Third, artificial orthogonal linear
scarps can be found in small-scale and global DEMs, the result of assembling
several DEMs varying in origin and accuracy. A case in point is ETOPOS, 5-
arc-min gridded global DEM (NOAA, 1988): particularly striking is the presence
of orthogonal ‘scarps’ in Arctic regions (Fig. 1A). Fourth, artificial lineaments
may be specifically inserted to a DEM. For example, the Canadian national DEM
(Natural Resources Canada, 1997) includes ‘sub-continental escarp’ along 49°N
because the Canadian/USA border is labeled as O m above sea level. Fifth, arti-
ficial lineaments may arise in detailed DEMs after digitizing man-made altitude
differences located along some transport and industrial objects (roads, dams, etc.).

Errors in DEM Interpolation

It was found that interpolations of DEMs along a series of profiles of the
four cardinal orientations, orthogonal, and diagonal, can lead to linear artefacts
oriented in these directions (Wood and Fisher, 1993). Declercq (1996) carried
out an assessment of spatial pattern visualization of non-topographic data using
several interpolation methods, such as piecewise polynomials, quadratic and cubic
splines, linear triangulation, proximation, distance weighting, and kriging. He
demonstrated that for sparsely sampled areas, interpolation based on polynomials,
splines, and linear triangulation can lead to production of artificial linear patterns
of the cardinal orientations.

Pronounced linear artefacts, contour ‘traces,” can be found in DEMs with ‘en-
hanced’ resolution. Their source is a wrong over-detailed grid size used for DEM
interpolation. This situation was detailed and illustrated elsewhere (Florinsky,
2002).

Aliasing Errors (the Moiré Effect)

A cause of these artefacts well known in signal and image processing is the
interference of two periodic structures (i.e., a function with actual periodic patterns
and a discretization grid) using a wrong grid size to sample a periodic function
(Rosenfeld and Kak, 1982). This may result in the occurrence of a system of
artificial linear patterns of some orientation. In digital terrain modeling, the Moiré
fringes may arise in studying a terrain with a well-marked spatial periodicity (e.g.,
dunes). As far as we know, the Moiré effect has yet to be analyzed in the context
of digital terrain modeling.

It is obvious that linear artefacts of preferable orientations caused by DEM
compilation and interpolation, and the Moiré effect can be propagated from DEMs



Artificial Lineaments in Digital Terrain Modelling 369

to secondary DTMs. Moreover, digital and visual manifestation of these artefacts
can be increased in secondary DTMs derived from these DEMs using differenti-
ation. This is connected with a well-known fact that differentiation of a function
increases a noise manifestation (Florinsky, 2002). This may introduce a risk to
DTM-based revealing of geological structures, since these approaches are based
on a derivation of hillshading, k;, and k, maps from DEMs using partial derivatives
(Table 2).

Imperfection of Algorithms for DTM Derivation

Although a DEM may be free of linear artefacts, some secondary DTMs de-
rived from the DEM may include them due to intrinsic properties of algorithms for
DTM derivation. For example, some algorithms for derivation of drainage/divide
networks from DEMs (i.e., ‘streaming’ and ‘breadth-first search’ algorithms) may
produce pronounced parallel networks (Riazanoff, Cervelle, and Chorowicz, 1988;
Liang and Mackay, 2000).

In the case of analytical description of a function, anisotropies of partial
differential operators compensate each other once combined in operators of local
topographic variables, except A. However, discrete computational procedures of
digital terrain modeling usually involve approximations of partial derivatives by
finite differences on regular grids (Table 2) rather than direct analytical calcula-
tions. A possible incomplete compensation of anisotropies of partial differential
operators, especially with crude approximations, may be a problem. As far as we
know, this issue has not been studied, although accuracy of several algorithms for
approximation of p, ¢, r, s, and ¢ was assessed (Florinsky, 1998a).

CONCLUSIONS

We proved that operators of local topographic variables of the complete
system of curvatures, except A, are rotation invariants. Rotating an elevation
function about z-axis and then applying these operators cannot lead to variations
in both values of topographic variables and patterns in their maps, comparing
with results of applying these operators to an unrotated elevation function. This
demonstrates that linear artefacts of preferable directions in maps of G, ky, ky, H,
K, K,, K, M, E, knin, kmax»> kne, and kye cannot be caused by intrinsic properties of
their operators. However, the probability exists of retaining anisotropies of partial
differential operators when combined in operators of local topographic variables,
if partial differential operators are crudely approximated. This issue should be
studied in the future.

We suppose that main sources of linear artefacts in DTMs and maps of local
topographic variables are errors of DEM compilation and interpolation. However,
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although errors of DEM compilation can lead to many false lineaments, they usu-
ally have a pronounced manifestation, and may be detected by a visual analysis
(Hunter and Goodchild, 1995) and numerical procedures (Brown and Bara, 1994).
In contrast, errors of DEM interpolation can introduce more problems for geo-
logical interpretations, especially in studies of geological surfaces: in this case,
there is no an unambiguous and objective criterion to assess interpolation accuracy
and fidelity of interpolated surfaces and/or revealed structures (McCullagh, 1988).
This calls for further investigation of interpolation algorithms.

Study of errors leading to artificial lineaments in maps of topographic vari-
ables is an important issue in the context of expanding implementation of digital
terrain modeling in geological studies. The expanding is connected with several
factors. First, a physico-mathematical theory of a surface in gravity, the basis of
digital terrain modeling, is being developed (Shary, 1995). Second, digital terrain
modeling is characterized by relatively simple mathematics, algorithms, and soft-
ware. Third, a raster format of DTMs is convenient to link them with geophysical
and remotely sensed data. Fourth, methods of digital terrain modeling can be used
at a broad range of spatial scales (Pike, 2000). Finally, global DEMs, such as
ETOPOS and GTOPO30 (NOAA, 1988; Gesch, Verdin, and Greenlee, 1999), as
well as DEMs of some terrestrial planets and satellites (Smith and others, 1999)
are available for an analysis.
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