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Loci of extreme curvature of the topographic surface may be defined by the

derivation function (T) depending on the first-, second-, and third-order partial

derivatives of elevation. The loci may partially describe ridge and thalweg lines.

The first- and second-order partial derivatives are commonly calculated from a

digital elevation model (DEM) by fitting the second-order polynomial to a 363

window. This approach cannot be used to compute the third-order partial

derivatives and T. We deduced formulae to estimate the first-, second-, and third-

order partial derivatives from a DEM fitting the third-order polynomial to a

565 window. The polynomial is approximated to elevation values of the

window. This leads to a local denoising that may enhance calculations. Under the

same grid size of a DEM and root mean square error (RMSE) of elevation,

calculation of the second-order partial derivatives by the method developed

results in significantly lower RMSE of the derivatives than that using the second-

order polynomial and the 363 window. An RMSE expression for the derivation

function is deduced. The method proposed can be applied to derive any local

topographic variable, such as slope gradient, aspect, curvatures, and T.

Treatment of a DEM by the method developed demonstrated that T mapping

may not substitute regional logistic algorithms to detect ridge/thalweg networks.

However, the third-order partial derivatives of elevation can be used in digital

terrain analysis, particularly, in landform classifications.
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1. Introduction

Let us consider a portion of the topographic surface which is: (1) considerably less

than the Earth’s radius, (2) characterised by homogeneous gravity, and (3) described

by a single-valued infinitely differentiable function z5f(x, y), where z is elevation, x

and y are Cartesian co-ordinates. One can distinguish two families of spatial curves

on the topographic surface: contours and slope lines (Cayley 1859). A contour is a

locus of intersection of a horizontal plane with the topographic surface. For any

point of a slope line, the direction of a tangent vector to the curve coincides with the

direction of a tangential component of the gravity vector. Slope lines are not defined

at special points of the surface (e.g., local maxima, minima, saddles, flat areas).

Slope lines and contours are mutually perpendicular at their intersections.
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Considering these families of spatial curves, one can distinguish two groups of loci of

extreme curvature of the topographic surface: (1) locus of extreme curvature of

contours, and (2) locus of extreme curvature of slope lines. Obviously extreme curvature

varies in sign: one can set the positive sign to convex areas and negative – to concave

ones. Loci of extreme curvature may partially describe four types of geomorphic lines:

N Ridge lines, or crests – the locus of positive extreme curvature of contours.

N Valley lines, or thalwegs – the locus of negative extreme curvature of contours.

N Convex break lines – the locus of positive extreme curvature of slope lines.

N Concave break lines – the locus of negative extreme curvature of slope lines.

Geomorphic ‘lines’ are formed not only by the loci of extreme curvature, but by loci of

special points (i.e., local maxima and minima, saddles, and flat horizontal areas) as well.

At the same time, one can consider ridge and valley lines as two topologically

connected tree- or graph-like hierarchical structures. Maxwell (1870) defined a ridge

as a slope line connecting a sequence of local maximal and saddle points, while a

thalweg as a slope line connecting a sequence of local minimal and saddle points.

Over a century, these quantitative definitions have provided a basis for manual

delineation of ridge and valley lines using topographic maps.

Digital terrain modelling (Florinsky 1998b, Shary et al. 2002) is closely allied to

signal processing (Florinsky 2002). There is a principle difference between a

topographic surface, with properties that are in many respects controlled by gravity,

and an image intensity function. However, from the technical point of view, the

algorithms of digital terrain modelling may be applied in image processing, and vice

versa, algorithms of image processing are used in digital terrain analysis. Thus, it is

not surprising that delineation of ridges and thalwegs is one of the topical tasks of

digital terrain modelling, image processing, and machine vision. In digital terrain

modelling, researchers focus attention on the detection of thalwegs. The delineation of

ridges receives much consideration in image processing.

The twofold nature of geomorphic lines is responsible for the existence of two

fundamentally different groups of techniques to delineate ridges and thalwegs.

Methods of the first group are based on principles of differential geometry. Originating

in classical works on geometry (de Saint-Venant 1852, Boussinesq 1871, Jordan 1872,

Breton de Champ 1877), they are predominantly used in image processing (Haralick

1983, Koenderink and van Doorn 1993, Eberly et al. 1994, Maintz et al. 1996, Rieger

1997, López et al. 1998). In these approaches, differential geometric criteria are usually

applied to detect loci of extreme values of mean, principal, and contour curvatures. A

non-trivial method by López and Serrat (1996), implementing a differential equation of

Rothe (1915), may be also placed into this group.

Methods of the second group are based on logistic processing of data, such as cell-

to-cell flow routing and calculation of an upslope catchment area with subsequent

thresholding of its values. These approaches are commonly used in digital terrain

modelling (Mark 1984, O’Callaghan and Mark 1984, Band 1986, Douglas 1986,

Skidmore 1990, Tribe 1992, Meisels et al. 1995, Chang et al. 1998, Jones 2002).

In scale terms, methods of the first group are local since they concern a small

neighbourhood of a point within a moving window. Methods of the second group

are regional or global because determination of flow routing requires an analysis of

rather large portions of a terrain.

There is a third group of algorithms combining local differential geometric and

regional logistic approaches. In this case, differential geometrical criteria are used to
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detect saddle points or points of extreme contour curvature, and then logistic

procedures are applied to link the points for visualisation of ridges and thalwegs

(Gauch and Pizer 1993, Kweon and Kanade 1994, Steger 1999).

Horizontal curvature (kh) is the measure of convergence and divergence of slope

lines. Negative values of kh indicate convergence areas of slope lines, while positive

values of kh correspond to divergence areas. At the same time, kh is the product of the
contour curvature and slope factor (Shary et al. 2002). This means that kh contains

information on the behaviour of both contours and slope lines. Thus, to find loci of

extreme curvature of both families of spatial curves, one needs to find loci of extreme

values of kh. Clearly, they correspond to zero values of the kh derivative, the so-called

derivation function (T) (Shary and Stepanov 1991):

T~
dkh

dj
ð1Þ

where j is a length of a contour arc, and

kh~{
q2r{2pqszp2t

p2zq2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1zp2zq2
p ð2Þ

where r, t, s, p and q are the second- and first-order partial derivatives of elevation:

r~
L2z

Lx2
, t~

L2z

Ly2
, s~

L2z

LxLy
, p~

Lz

Lx
, q~

Lz

Ly
ð3aÞ

The expression for the derivation function has the following form (Appendix A):

T~
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2zq2ð Þ3 1zp2zq2ð Þ
q q3a{3pq2bz3p2qc{p3dz

�

q2r{2pqszp2t
� �

pq t{rð Þzs p2{q2
� �� �

2z3p2z3q2
� �

p2zq2ð Þ 1zp2zq2ð Þ

�

ð4Þ

where a, d, b and c are the third-order partial derivatives of elevation:

a~
L3z

Lx3
, d~

L3z

Ly3
, b~

L3z

Lx2Ly
, c~

L3z

LxLy2
ð3bÞ

T can be interpreted as a measure for the deflection of kh from loci of extreme

curvature of the topographic surface. The unit of T is m22. Shary and Stepanov

(1991) proposed that ridges and convex break lines relate to the locus of T50 within

divergence areas, while thalwegs and concave break lines correspond to the locus of
T50 within convergence areas.

One can calculate r, t, s, p and q from a square-spaced digital elevation model

(DEM) by various methods. The method of Evans (1979) has received wide acceptance

owing to high accuracy (Florinsky 1998a, Schmidt et al. 2003). Under this method, the

second-order polynomial is fitted by least squares to a 363 square-gridded window

leading to finite difference formulae of r, t, s, p, and q (Appendix B). Using a partial
quartic polynomial and a 363 window, Zevenbergen and Thorne (1987) developed

formulae of polynomial coefficients proportional to b and c, but did not utilise them.

As far as we know, finite difference expressions for the third-order partial

derivatives, and T mapping to detect loci of extreme curvature have not been

previously reported. In this paper, these formulae are deduced, and T computation

from a DEM is presented. Calculation accuracy of the partial derivatives of elevation
and T is discussed. We also check a proposal of Shary and Stepanov (1991) that T

mapping can be used to reveal ridge and thalweg networks.
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2. Formulae for the third-order partial derivatives

It is clear that the second-order polynomial (A6) is not suitable to deduce formulae

of third-order partial derivatives because it does not include third-order terms.

There is a need to utilise, at least, the third-order polynomial. Using the well-known

Taylor’s formula (Fikhtengolts 1966, Lang 1996), a function z5f(x, y) can be

expressed conveniently as follows:

z~
1

6
ax3z

1

6
dy3z

1

2
bx2yz

1

2
cxy2z

1

2
rx2z

1

2
ty2zsxyzpxzqyzu ð5Þ

Under the least squares method (Bjerhammar 1973), one should carry out n

measurements of z to find m unknown coefficients of z5f(x, y), with n.(m + 1).

Therefore, one cannot use a 363 window (Appendix B) to find the ten unknown

coefficients a, d, b, c, r, t, s, p, q and u of the third-order polynomial (5): the window

includes only nine measured values of z. To find these coefficients for the central point

of a window, there is a need to use, at least, a 565 window (figure 1). Cartesian co-

ordinates and elevations of the land surface are known for twenty five points of this

window: (22w, 2w, z1), (2w, 2w, z2), (0, 2w, z3), (w, 2w, z4), (2w, 2w, z5), (22w, w, z6),

(2w, w, z7), (0, w, z8), (w, w, z9), (2w, w, z10), (22w, 0, z11), (2w, 0, z12), (0, 0, z13), (w, 0,

z14), (2w, 0, z15), (22w, 2w, z16), (2w, 2w, z17), (0, 2w, z18), (w, 2w, z19), (2w, 2w,

z20), (22w, 22w, z21), (2w, 22w, z22), (0, 22w, z23), (w, 22w, z24), and (2w, 22w, z25).

Let us fit the polynomial (5) to the 565 window by the least squares method

(Bjerhammar 1973). Writing the polynomial (5) for all points of the window, we

obtain a system of twenty five conditional linear equations:

a~Fb ð6Þ
where a is a 2561 matrix of twenty five measured values of z:

a~

z1

z2

..

.

z25

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

ð7Þ

Figure 1. The 565 window: 1, …, 25 are numbers of the window nodes, w is grid size (metres).
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b is a 1061 matrix of ten unknown coefficients of the polynomial (5):

b~

a

d

b

c

r

t

s

p

q

u

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

ð8Þ

and F is a 25610 matrix of known coefficients of the equation system:

F~

{ 4
3

w3 4
3

w3 4w3 {4w3 2w2 2w2 {4w2 {2w 2w 1

{ 1
6

w3 4
3

w3 w3 {2w3 1
2

w2 2w2 {2w2 {w 2w 1

0 4
3

w3 0 0 0 2w2 0 0 2w 1

1
6

w3 4
3

w3 w3 2w3 1
2

w2 2w2 2w2 w 2w 1

4
3

w3 4
3

w3 4w3 4w3 2w2 2w2 4w2 2w 2w 1

{ 4
3

w3 1
6

w3 2w3 {w3 2w2 1
2

w2 {2w2 {2w w 1

{ 1
6

w3 1
6

w3 1
2

w3 { 1
2

w3 1
2

w2 1
2

w2 {w2 {w w 1

0 1
6

w3 0 0 0 1
2

w2 0 0 w 1

1
6

w3 1
6

w3 1
2

w3 1
2

w3 1
2

w2 1
2

w2 w2 w w 1

4
3

w3 1
6

w3 2w3 w3 2w2 1
2

w2 2w2 2w w 1

{ 4
3

w3 0 0 0 2w2 0 0 {2w 0 1

{ 1
6

w3 0 0 0 1
2

w2 0 0 {w 0 1

0 0 0 0 0 0 0 0 0 1
1
6

w3 0 0 0 1
2

w2 0 0 w 0 1

4
3

w3 0 0 0 2w2 0 0 2w 0 1

{ 4
3

w3 { 1
6

w3 {2w3 {w3 2w2 1
2

w2 2w2 {2w {w 1

{ 1
6

w3 { 1
6

w3 { 1
2

w3 { 1
2

w3 1
2

w2 1
2

w2 w2 {w {w 1

0 { 1
6

w3 0 0 0 1
2

w2 0 0 {w 1

1
6

w3 { 1
6

w3 { 1
2

w3 1
2

w3 1
2

w2 1
2

w2 {w2 w {w 1

4
3

w3 { 1
6

w3 {2w3 w3 2w2 1
2

w2 {2w2 2w {w 1

{ 4
3

w3 { 4
3

w3 {4w3 {4w3 2w2 2w2 4w2 {2w {2w 1

{ 1
6

w3 { 4
3

w3 {w3 {2w3 1
2

w2 2w2 2w2 {w {2w 1

0 { 4
3

w3 0 0 0 2w2 0 0 {2w 1

1
6

w3 { 4
3

w3 {w3 2w3 1
2

w2 2w2 {2w2 w {2w 1

4
3

w3 { 4
3

w3 {4w3 4w3 2w2 2w2 {4w2 2w {2w 1
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ð9Þ
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To determine unknown coefficients of the polynomial (5), we should solve the

following equation:

b~ FTF
� �{1

FTa ð10Þ

where FT is a transposed matrix of F, and (FTF)21 is an inverse matrix of FTF.

Through matrix operations, we can obtain the 10625 matrix:

FTF
� �{1

FT~

{ 1
10w3

1
5w3 0 { 1

5w3
1

10w3 { 1
10w3

1
5w3 0

1
10w3

1
10w3

1
10w3

1
10w3

1
10w3 { 1

5w3 { 1
5w3 { 1

5w3

2
35w3 { 1

35w3 { 2
35w3 { 1

35w3
2

35w3
1

35w3 { 1
70w3 { 1

35w3

{ 2
35w3 { 1

35w3 0 1
35w3

2
35w3

1
35w3

1
70w3 0

2
35w2 { 1

35w2 { 2
35w2 { 1

35w2
2

35w2
2

35w2 { 1
35w2 { 2

35w2

2
35w2

2
35w2

2
35w2

2
35w2

2
35w2 { 1

35w2 { 1
35w2 { 1

35w2

{ 1
25w2 { 1

50w2 0 1
50w2

1
25w2 { 1

50w2 { 1
100w2 0

31
420w

{ 11
105w

0 11
105w

{ 31
420w

{ 1
84w

{ 31
210w

0

{ 31
420w

1
84w

17
420w

1
84w

{ 31
420w

11
105w

31
210w

17
105w

{ 13
175

2
175

1
25

2
175

{ 13
175

2
175

17
175

22
175

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

{ 1
5w3

1
10w3 { 1

10w3
1

5w3

{ 1
5w3 { 1

5w3 0 0

{ 1
70w3

1
35w3 0 0

{ 1
70w3 { 1

35w3
2

35w3
1

35w3

{ 1
35w2

2
35w2

2
35w2 { 1

35w2

{ 1
35w2 { 1

35w2 { 2
35w2 { 2

35w2

1
100w2

1
50w2 0 0

31
210w

1
84w

{ 17
420w

{ 17
105w

31
210w

11
105w

0 0

17
175

2
175

1
25

22
175

0 { 1
5w3

1
10w3 { 1

10w3
1

5w3 0

0 0 0 1
5w3

1
5w3

1
5w3

0 0 0 { 1
35w3

1
70w3

1
35w3

0 { 1
35w3 { 2

35w3
1

35w3
1

70w3 0

{ 2
35w2 { 1

35w2
2

35w2
2

35w2 { 1
35w2 { 2

35w2

{ 2
35w2 { 2

35w2 { 2
35w2 { 1

35w2 { 1
35w2 { 1

35w2

0 0 0 1
50w2

1
100w2 0

0 17
105w

17
420w

{ 1
84w

{ 31
210w

0

0 0 0 { 11
105w

{ 31
210w

{ 17
105w

27
175

22
175

1
25

2
175

17
175

22
175

{ 1
5w3

1
10w3 { 1

10w3
1

5w3 0 { 1
5w3

1
10w3

1
5w3

1
5w3 { 1

10w3 { 1
10w3 { 1

10w3 { 1
10w3 { 1

10w3

1
70w3 { 1

35w3 { 2
35w3

1
35w3

2
35w3

1
35w3 { 2

35w3

{ 1
70w3 { 1

35w3 { 2
35w3 { 1

35w3 0 1
35w3

2
35w3

{ 1
35w2

2
35w2

2
35w2 { 1

35w2 { 2
35w2 { 1

35w2
2

35w2

{ 1
35w2 { 1

35w2
2

35w2
2

35w2
2

35w2
2

35w2
2

35w2

{ 1
100w2 { 1

50w2
1

25w2
1

50w2 0 { 1
50w2 { 1

25w2

31
210w

1
84w

31
420w

{ 11
105w

0 11
105w

{ 31
420w

{ 31
210w

{ 11
105w

31
420w

{ 1
84w

{ 17
420w

{ 1
84w

31
420w

17
175

2
175

{ 13
175

2
175

1
25

2
175

{ 13
175

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

ð11Þ

Through simple algebraic operations, we can obtain the formulae for the partial

derivatives of elevation:
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a~
1

10w3
z5zz10zz15zz20zz25{z1{z6{z11{z16{z21z½

2 z2zz7zz12zz17zz22{z4{z9{z14{z19{z24ð Þ�
ð12Þ

d~
1

10w3
z1zz2zz3zz4zz5{z21{z22{z23{z24{z25z½

2 z16zz17zz18zz19zz20{z6{z7{z8{z9{z10ð Þ�
ð13Þ

b~
1

70w3
z17zz19{z7{z9z4 z1zz5zz23{z3{z21{z25ð Þz½

2 z6zz10zz18zz22zz24{z2{z4{z8{z16{z20ð Þ�
ð14Þ

c~
1

70w3
z7zz17{z9{z19z4 z5zz11zz25{z1{z15{z21ð Þz½

2 z4zz6zz12zz16zz24{z2{z10{z14{z20{z22ð Þ�
ð15Þ

r~
1

35w2
2 z1zz5zz6zz10zz11zz15zz16zz20zz21zz25ð Þ{½

2 z3zz8zz13zz18zz23ð Þ{z2{z4{z7{z9{z12{z14{z17{z19{z22{z24�
ð16Þ

t~
1

35w2
2 z1zz2zz3zz4zz5zz21zz22zz23zz24zz25ð Þ{½

2 z11zz12zz13zz14zz15ð Þ{z6{z7{z8{z9{z10{z16{z17{z18{z19{z20�
ð17Þ

s~
1

100w2
z9zz17{z7{z19z4 z5zz21{z1{z25ð Þz½

2 z4zz10zz16zz22{z2{z6{z20{z24ð Þ�
ð18Þ

p~
1

420w
44 z4zz24{z2{z22ð Þz31 z1zz21{z5{z25z2 z9zz19{z7{z17ð Þ½ �zf

17 z15{z11z4 z14{z12ð Þ½ �z5 z10zz20{z6{z16ð Þg
ð19Þ

q~
1

420w
44 z6zz10{z16{z20ð Þz31 z21zz25{z1{z5z2 z7zz9{z17{z19ð Þ½ �zf

17 z3{z23z4 z8{z18ð Þ½ �z5 z2zz4{z22{z24ð Þg
ð20Þ

We do not present a formula for the term u, since it is not used in calculations.

The formulae deduced (12–20) can be used to compute not only the derivation

function but any local topographic variable, such as slope gradient, aspect, and land

surface curvatures as well.

3. Calculation accuracy of the partial derivatives and derivation function

Let us compare the calculation accuracy of expressions of the second- and first-

order partial derivatives related to the third-order polynomial (16–20) and those
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related to the second-order polynomial (A7–A11) in terms of root mean square error

(RMSE) of a function F of measured variables (mF):

mF~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

LF

Lx

	 
2

0

m2
xz

LF

Ly

	 
2

0

m2
yz . . . z

LF

Lu

	 
2

0

m2
u

s

ð21Þ

where x, y, …, u are measured arguments of F, and mx, my, …, mu are RMSE of x, y,

…, u, correspondingly. For the Evans method, Florinsky (1998a) developed

formulae of RMSE of r, t, s, p, and q (mr, mt, ms, mp, and mq, respectively – table 1).

In a similar manner, let us produce formulae of mr, mt, ms, mp, and mq for

expressions (16–20), as well as formulae of RMSE of a, d, b, and c for expressions

(12–15) (ma, md, mb and mc, respectively). Considering mz1
~mz2

~ . . . ~mz25
~mz,

where mzi
is RMSE of zi, we obtained the required formulae (table 1).

Let us compare the formulae of mr, mt, ms, mp and mq related to the two

polynomials (table 1). RMSE of partial derivatives of elevation is in direct

proportion to mz and in inverse (linear and quadratic) proportions to w. Under

the same w and mz, the equations of r, t, and s, related to the third-order polynomial,

result in significantly lower values of RMSE than those related to the second-order

polynomial (table 1). Indeed, mr and mt for equations (16 and 17) are almost 6 times

less than those for equations (A7 and A8). ms for equation (18) is 5 times less than

that for equation (A9). mp and mq for equations (19 and 20) are a mere 10% higher

than those for equations (A10 and A11) (table 1). This means that in derivating local

topographic variables, the method developed can provide higher accuracy than the

Evans method.

In a similar manner, let us develop a RMSE formula for T (mT). To simplify the

presentation of the formula, let us define five compound terms, A1 … A5, and

rewrite equation (4) as

T~A1 A2zA3A4A5ð Þ ð22Þ

where

A1~
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2zq2ð Þ3 1zp2zq2ð Þ
q ð23aÞ

A2~q3a{3pq2bz3p2qc{p3d ð23bÞ

Table 1. RMSE of partial derivatives calculated by the Evans method (Florinsky 1998a) and
the proposed method.

RMSE
The second-order polynomial,
the 363 window

The third-order polynomial,
the 565 window

mp and mq
mz
ffiffi

6
p

w

ffiffiffiffiffiffi

527
70

q

mz

6w

mr and mt

ffiffi

2
p

mz

w2

ffiffiffiffi

2
35

q

mz

w2

ms
mz

2w2
mz

10w2

ma and md – mz
ffiffi

2
p

w3

mb and mc – mz
ffiffiffiffi

35
p

w3
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A3~q2r{2pqszp2t ð23cÞ

A4~
2z3p2z3q2

p2zq2ð Þ 1zp2zq2ð Þ ð23dÞ

A5~pq t{rð Þzs p2{q2
� �

ð23eÞ

In this case,

mT~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
A1

A2
2z2A2A3A4A5zA2

3A2
4A2

5

� �

zA2
1 m2

A2
zA2

5 A2
4m2

A3
zA2

3m2
A4

� �

zA2
3A2

4m2
A5

h i

r

ð24Þ

where mAi
are RMSE of the terms Ai. Considering mp5mq, mr5mt, ma5md, and

mb5mc (table 1), expressions for mAi
take the following forms:

m2
A1

~m2
p

3z4p2z4q2
� �2

p2zq2ð Þ4 1zp2zq2ð Þ3
ð25aÞ

m2
A2

~9m2
p q4 a2zb2

� �

zp4 c2zd2
� �

z2p2q2 2 b2zc2
� �

zaczbd
� 

{
�

4pq q2b azcð Þzp2c bzdð Þ
� �

zm2
a p6zq6
� �

z9m2
bp2q2 p2zq2

� �

ð25bÞ

m2
A3

~4m2
p p2 t2zs2

� �

{2pqs rztð Þzq2 r2zs2
� �� �

zm2
r p4zq4
� �

z4m2
s p2q2 ð25cÞ

m2
A4

~4m2
p

p2 4z3p2
� �

zq2 4z3q2
� �

z6p2q2z2
� �2

p2zq2ð Þ3 1zp2zq2ð Þ4
ð25dÞ

m2
A5

~m2
p p2zq2
� �

4s2z t{rð Þ2
h i

z2m2
r p2q2zm2

s p2{q2
� �2 ð25eÞ

Development of the formulae was carried out with the software Maple V Release

5.0 (# Waterloo Maple Inc., 1981–1997).

4. Materials and methods

To exemplify application of the method developed, we used a portion of a DEM of

North Caucasus, Russia (Florinsky 2002). An irregular DEM was compiled by

digitising a topographic map with contour interval of 50 m (Central Board of Geodesy

and Cartography 1968). The area selected measures about 133 by 100 km including

the middle part of the Kuma River basin. The irregular DEM included 2571 points.

Using the Delaunay triangulation and a piecewise quadric polynomial interpola-

tion with matching derivatives along triangle edges (Watson 1992), we produced a

square-gridded DEM with a grid size of 300 m (figure 2). To reduce high frequency

noise in the DEM, we applied three iterations of smoothing to the DEM using the

363 window with linear inverse distance weights.

4.1 Testing the method developed

Digital models of kh (figure 3), T (figure 4(a)), and mT (figure 5) were derived from

the smoothed DEM using the method developed. Combining digital models of T
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(figure 4(a)) and kh (figure 3), we delineated loci of positive (figure 4(b)) and negative

(figure 4(c)) extreme curvature of the topographic surface.

To compare accuracies of the method developed and the Evans method, we

carried out the following procedures. First, we derived a digital model of kh from the

Figure 2. Elevation map for the North Caucasus study area.

Figure 3. Map of horizontal curvature.
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smoothed DEM by the Evans method (Appendix B). Second, the difference between

the two kh models (Dkh) was calculated (figure 6(a)). Third, we visually analysed

patterns of both kh maps (figure 6(b) and (c)). Fourth, we performed an analysis of

statistical distributions of Dkh and both kh values as well as the Kolmogorov-

Smirnov test for statistical difference between the two distributions of kh (figure 7).

We used samples each including 1376 points (regular matrices 43632 with the grid

size of 3000 m extracted from related digital models).

It is undesirable to map a local topographic variable, such as kh, with an equal-

step quantification of its values. As a rule, this leads to information loss due to the

large dynamic range of a digital model. To gain a better representation and

understanding of patterns of kh, Dkh, T, and mT maps, digital models of these

Figure 4. Maps of the derivation function: (a) spatial distribution of T values, (b) zero
values of T within divergence areas – the locus of positive extreme curvature of the land
surface, (c) zero values of T within convergence areas – the locus of negative extreme
curvature of the land surface.

Figure 5. Map of RMSE of the derivation function.
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variables were logarithmically transformed (Shary et al. 2002):

H’~sign Hð Þ:ln 1z10n Hj jð Þ ð26Þ

where H represents kh, Dkh, T, and mT; n55 for kh and Dkh, and n510 for T and mT.

Figure 6. Horizontal curvature derived by two methods: (a) Dkh map, (b) enlarged lower left
portion of the kh map derived by the Evans method, (c) enlarged lower left portion of the kh

map derived by the method developed.

Figure 7. Statistical distribution of logarithmically transformed kh values: (a) histogram for
kh derived by the Evans method, (b) histogram for kh derived by the method developed, (c)
histogram for Dkh, (d) quantile plot for kh derived by the Evans method (grey line) and the
method developed (black line).
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This form of transformation allows one to hold ranges of positive and negative

values of a variable and scale them correctly (figures 3–6).

DEM interpolation and smoothing as well as calculation and mapping were done

with LandLord 4.0 (Florinsky et al. 1995). Statistical analysis was carried out by

Statgraphics Plus 3.0 (# Statistical Graphics Corp., 1994–1997).

4.2 Detecting ridge/thalweg networks

We did not attempt a comprehensive comparison of the performance of T mapping

and previous algorithms in detecting ridge/thalweg networks. First, the loci of extreme

curvature of the topographic surface, delineated by T mapping, are not equal to ridge

and thalweg lines (section 1). Second, detailed comparisons of previous methods can

be found elsewhere (Skidmore 1990, Tribe 1992, Gauch and Pizer 1993, López et al.

1999). To check a proposal of Shary and Stepanov (1991) that T mapping can be used

to reveal ridge/thalweg networks, we compared maps of loci of positive and negative

extreme curvature (figure 4(b) and (c)) with ridge/thalweg maps obtained using the

software CatchmentSIM 1.29 (Ryan and Boyd 2003).

In this software, flats and pits can be removed from a DEM by the breaching

algorithm of Jones (2002). In flow routing, a downslope flow angle is determined by

a modified multiple direction algorithm (Lea 1992). Channel heads are detected

using a catchment area threshold (Jones 2002). In a raster procedure, thalwegs are

defined as pixels with catchment area values greater than the threshold. In a vector

procedure, thalwegs are traced from each channel head, their intersections are

recorded, and then thalweg ordering is calculated. Treating an inverted DEM, a

ridge network may be constructed in the same way.

After elimination of pits and flats from the DEM, we produced two maps of ridges

and thalwegs using CatchmentSIM. First, ridges and thalwegs were delineated by the

raster procedure with a catchment area threshold of 25 pixels (figure 8(a)). Second, six

orders of ridges and thalwegs were mapped by the vector procedure (figure 8(b)).

5. Results and discussion

5.1 Detecting ridge/thalweg networks

The map of T (figure 4(a)) includes all loci of extreme curvature of the topographic

surface. They appear as borders between areas of positive and negative values of T

Figure 8. Ridge (grey) and thalweg (black) networks derived from the DEM using
CatchmentSIM software, by (a) raster procedure; (b) vector procedure.
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(light and dark patterns, correspondingly). The map of zero values of the derivation

function located within areas of flow divergence (T50 with kh.0) displays the locus

of positive extreme curvature (figure 4(b)). The map of zero values of the derivation

function located within areas of flow convergence (T50 with kh,0) displays the

locus of negative extreme curvature (figure 4(c)).

The mT map (figure 5) displays the spatial distribution of the probability of error

arising during calculations. The highest mT values can be found along loci of

extreme curvature. As with RMSE of curvatures (Florinsky 1998a), mT values may

be in excess of absolute maximal values of T (figure 5).

According to Shary and Stepanov (1991), the positive extreme curvature map

(figure 4(b)) should display ridges and convex break lines, while the negative

extreme curvature map (figure 4(c)) should represent thalwegs and concave break

lines. However, even a cursory examination of the maps showed that they fail to

detect these geomorphic lines correctly. This inference is supported by comparison

with the maps of ridge/thalweg networks delineated using regional logistic

approaches (figure 8). The main problem is that loci of extreme curvature are

interrupted in many places (figure 4(b) and (c)). This can be caused by interpolation

and smoothing errors, the remains of the high frequency noise of the DEM, and

loci of special points, viz. local maxima and minima, saddles, and minor flat

horizontal areas.

Therefore, in terms of ridge/thalweg detection, T mapping is marked by the

following disadvantages. First, once again, loci of extreme curvature may only

partially define thalweg/ridge lines (section 1). Second, the calculation of partial

derivatives is sensitive to errors and noise existing copiously in a DEM (Florinsky

2002). Third, T mapping cannot reveal thalweg/ridge networks as hierarchical

structures of tributary orders. These may testify that T mapping cannot substitute

regional logistic algorithms. To claim this unambiguously, considering the

limitations of the DEM interpolated from the contour map, one should carry out

further tests of T-based revealing of thalweg/ridge networks using more detailed

non-interpolated DEMs derived from LiDAR or SRTM data.

5.2 Testing the method developed

As a tool to compute local topographic variables, the method developed shares a

common trait with the Evans approach (Appendix B): the polynomial (5) is

approximated to elevation values of the 565 window rather than passing exactly

through them. This leads to a local denoising that may enhance the calculation of

derivatives and local topographic variables because they are responsive to a high

frequency component of a signal (Florinsky 2002). However, Wood (1996)

supposed that calculation of derivatives fitting the third and higher order

polynomials to n6n windows, where n.3, can lead to an undue generalisation

of the surface.

This is not necessarily the case. Comparing kh maps derived by two methods

(figure 6(c) and (d)), one can see that local changes in map patterns enclose from

one to about five pixels. This is a level of denoising rather than generalisation. One

can find the same level of changes in the kh dynamic range: it was [22.55/2.44] and

[22.49/2.31] for the Evans method and for the developed method, correspondingly

(figure 6(c) and (d)). Thus, the change in the kh dynamic range was only about 4%.

This is an insignificant alteration. The map of Dkh represents a complex picture for

the spatial distribution of changes in kh values (figure 6(a)). However, most changes
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were in the range from 20.1 to 0.1 (figure 7(c)). Again, this is 4% of the dynamic

range of kh derived by the Evans method. Histograms of the two kh samples are

very similar (figure 7(a) and (b)). Results of the Kolmogorov-Smirnov test applied

to the two kh samples are as follows: the estimated overall statistic DN50.025, the

two-sided large sample K-S statistic is 0.67, and P value50.77. Thus, there is no

statistically significant difference between the two distributions at the 95%

confidence level. The quantile plot demonstrates this: curves for the two kh

samples coincide very closely (figure 7(d)). Therefore, the method developed

provides additional denoising of a DEM without an undue generalisation of the

surface.

Brief mention should be made of two secondary features of the method proposed.

First, formulae (16–20) are longer than the related expressions (A7–A11). Therefore,

the method works slower than the Evans method. However, this is not a critical

feature considering the efficiency of contemporary computers. Second, since all

functions (partial derivatives and local topographic attributes) are calculated for the

central point of the moving window (figure 1), they cannot be calculated for two

border rows and two border columns on each side of the DEM matrix. In the Evans

method, functions cannot be derived for the border rows and columns.

6. Conclusions

We deduced formulae to compute the third-, second- and first-order partial

derivatives from a DEM fitting the third-order polynomial to the 565 window. The

polynomial is approximated to elevation values of the window rather than passing

exactly through them. This leads to a local denoising that may enhance the

calculation of partial derivatives. The new method can be used to compute any local

topographic variable, such as slope gradient, aspect, land surface curvatures,

derivation function, etc. Compared to the Evans method, the method developed

allows one to derive more accurate models of topographic attributes.

This study demonstrated that T mapping may not substitute regional logistic

algorithms to detect ridge/thalweg networks. However, the third-order partial

derivatives can be used in digital terrain analysis. In particular, there were proposals

to consider them in landform classifications (Lastochkin 1987, Jenčo 1992, Minár

and Evans 2008). The method developed can be used to implement those ideas. One

can also utilise digital models of T, among other topographic attributes, in studying

and modelling relationships between topography and soil or plant properties.
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Appendix A. Deduction of the equation for the derivation function

From equations (1) and (2) follows

dkh

dj
~

Lkh

Lp

Lp

Lj
z

Lkh

Lq

Lq

Lj
z

Lkh

Lr

Lr
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Lt

Lt
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ðA1Þ

Considering equations (3), it is clear that
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~
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Similarly,
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p ,
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p
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p2zq2
p ðA4Þ

where the choice of a sign depends on the choice of a contour orientation (Shary

1991).

After differentiation, expression (A1) takes the form:

T~
sp{rq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2zq2
p

2 sq{tpð Þ
p2zq2ð Þ
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� �
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After simple algebraic operation, we obtain expression (4).

Appendix B. The Evans method

In the method of Evans (1979), the second-order polynomial

z~
rx2

2
z

ty2

2
zsxyzpxzqyzu ðA6Þ

is fitted by the least squares method to the 363 square-spaced window with a grid

size of w. Window points (2w, w, z1), (0, w, z2), (w, w, z3), (2w, 0, z4), (0, 0, z5), (w, 0,

z6), (2w, 2w, z7), (0, 2w, z8), and (w, 2w, z9) are measured Cartesian co-ordinates

and elevations of the land surface. As a result, one can estimate r, t, s, p, and q at the

point (0, 0, z5) by the finite difference formulae:

r~
z1zz3zz4zz6zz7zz9{2 z2zz5zz8ð Þ

3w2
ðA7Þ
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t~
z1zz2zz3zz7zz8zz9{2 z4zz5zz6ð Þ

3w2
ðA8Þ

s~
z3zz7{z1{z9

4w2
ðA9Þ

p~
z3zz6zz9{z1{z4{z7

6w
ðA10Þ

q~
z1zz2zz3{z7{z8{z9

6w
ðA11Þ

Moving the 363 window along a DEM, one can calculate values of r, t, s, p, and q

for all points of a DEM, except boundary points.
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