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Abstract
Digital elevation models (DEMs) are commonly constructed using

two main types of regular grids: plane square grids and spheroidal

equal angular grids. Methods and algorithms intended for plane

square-gridded DEMs should not be directly applied to spheroidal

equal angular DEMs. This is because these grids have fundamen-

tally different geometry. However, some researchers continue to

apply square-grid algorithms to spheroidal equal angular DEMs. It

seems appropriate to consider once again the specifity of morpho-

metric treatment of spheroidal equal angular DEMs. This article,

first, demonstrates possibilities of direct calculation of local, non-

local, and combined morphometric variables from spheroidal equal

angular DEMs exemplified by slope gradient, catchment area, and

topographic index. Second, the article shows computational errors

when algorithms for plane square-gridded DEMs are unreasonably

applied to spheroidal equal angular DEMs. The study is exemplified

by two DEMs. A medium-resolution DEM of a relatively small,

high-mountainous area (Mount Elbrus) was extracted from the

SRTM1 DEM. A low-resolution DEM of a vast region with the

diverse topography (the central and western regions of Kenya) was

extracted from the SRTM30_PLUS DEM. The results show that

application of square-grid methods to spheroidal equal angular

DEMs leads to substantial computational errors in models of mor-

phometric variables.
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1 | INTRODUCTION

Digital terrain analysis is widely used to solve various multiscale problems of geosciences, including landform and hydro-

logical modelling, predictive soil and vegetation mapping, revealing and analysis of geological features, modelling of ter-

rain evolution, terrain visualization, and so on (Moore, Grayson, & Ladson, 1991; Franklin, 1995; Wilson & Gallant,

2000; Li, Zhu, & Gold, 2005; Deng, 2007; Hengl & Reuter, 2009; Brocklehurst, 2010; Florinsky, 2012). One of the key
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steps and procedures of digital terrain analysis is derivation of digital models of morphometric variables from digital ele-

vation models (DEMs).

It is well known that DEMs are commonly constructed by interpolation of raw elevation data using two main kinds

of regular grids: (1) plane square grids, and (2) spheroidal equal angular grids (Figure 1). Grids of the first kind are typical

for high- and medium-resolution DEMs of relatively small areas, when the curvature of a planet may be ignored. Grids

of the second kind are employed to describe the topography of the globe or vast territories, when the curvature of a

planet may not be ignored. All global and quasi-global medium- and low-resolution DEMs (e. g., SRTM1, ASTER

GDEM, SRTM30_PLUS, GTOPO30) are based on grids of the second kind.

For plane square grids, there are several algorithms for calculation of local variables, such as slope gradient and

curvatures. These algorithms are based on approximation of the partial derivatives of elevation by finite differences

(Young, 1978; Evans, 1979; Zevenbergen & Thorne, 1987; Shary, 1995; Florinsky, 2009; Min�ar et al., 2013). There is

also a family of methods for derivation of nonlocal variables, e. g. catchment and dispersive areas. Such methods are

based on flow-routing logical procedures. They can be grouped into three main types: (1) eight-node single-flow direc-

tion (D8) algorithms; (2) multiple-flow direction (D1) algorithms; and (3) D8-D1 hybrid approaches (O’Callaghan &

Mark, 1984; Martz & de Jong, 1988; Freeman, 1991; Quinn, Beven, Chevallier, & Planchon, 1991; Tarboton, 1997;

Wilson, Aggett, Deng, & Lam, 2008; Orlandini & Moretti, 2009; Qin, Bao, Zhu, Hu, & Qin, 2013). Computation of com-

bined variables, such as topographic and stream power indices, is usually based on consecutive application of two algo-

rithms for nonlocal and local variables.

For spheroidal equal angular grids, there is a method for calculation of local morphometric variables (Florinsky,

1998; Florinsky, 2012, §4.3) and an approach for adaptation of any flow-routing algorithm to the geometry of a sphe-

roidal equal angular grid (Florinsky, 2012, pp. 60–61).

Experienced users are aware that methods and algorithms intended for plane square-gridded DEMs should not be

directly applied to spheroidal equal angular DEMs. This is because these grids have principally different geometry

(Figure 1): in spheroidal equal angular grids, a grid/cell size (measured in linear units) depends on the latitude.

There are only two correct options to handle spheroidal equal angular DEMs. First, one can re-project and interpo-

late a spheroidal equal angular DEM into a plane square-gridded DEM, and then apply methods for plane square grids

to the re-projected DEM. Second, one can directly utilize algorithms specially developed for spheroidal equal angular

grids.

For example, re-projection and interpolation of the GTOPO30 data have been performed to compute quasi-global

models of slope gradient (G), catchment area (CA), topographic index (TI), and some other morphometric attributes for

HYDRO1k, the quasi-global hydrographic database (Verdin & Greenlee, 1998; USGS, 2000). Direct treatment of global

spheroidal equal angular DEMs of the Earth, Mars, Venus, and the Moon has been conducted to calculate a set of

global models of local and nonlocal morphometric variables for these planetary bodies (Florinsky, 2008a, b; Florinsky &

Filippov, 2016). A global model of TI has been also computed for Mars (Florinsky, 2008b).

FIGURE 1 Two types of regular grids of DEMs: (a) Plane square grid. (b) Spheroidal equal angular grid
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At the same time, Guth (2006) has presented a comparison of twelve morphometric parameters (including G and

some curvatures) for the US, directly derived from two spheroidal equal angular DEMs (SRTM and NED) by methods

intended for plane square grids. Marthews, Dadson, Lehner, Abele, and Gedney, (2015) have recently reported the

preparation of quasi-global models of CA and TI using HydroSHEDS, the SRTM3-derived hydrographic database (Leh-

ner, 2013). The computation of CA and TI were performed directly on the spheroidal equal angular grid using methods

intended for plane square grids, ignoring the dependence of cell sizes on the latitude.

Thus, it seems appropriate to consider once again the specifity of morphometric treatment of spheroidal equal

angular DEMs. This article, first, demonstrates possibilities of direct calculation of local, nonlocal, and combined mor-

phometric variables from spheroidal equal angular DEMs exemplified by G, CA, and TI. Second, the article shows com-

putational errors when algorithms for plane square-gridded DEMs are unreasonably applied to spheroidal equal

angular DEMs to estimate these morphometric variables.

2 | METHODS

2.1 | Local morphometric variables

Slope gradient is an angle between the tangential and horizontal planes at a given point of the topographic surface. G

is estimated by the following formula (Shary et al., 2002):

G5arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p21q2

p
(1)

where p and q are the first partial derivatives of elevation

p5
oz
ox

; q5
oz
oy

(2)

For the case of a plane square grid, p and q can be estimated, for example, by the Evans–Young method (Young

1978; Evans 1979):

p5
z31z61z92z12z42z7

6w
; (3)

q5
z11z21z32z72z82z9

6w
; (4)

FIGURE 2 Movingwindows used to calculate local morphometric variables: (a) A 33 3 plane square-griddedwindow;
w is a grid spacing (m); and (b) A 33 3 spheroidal equal angular window, a, b, c, d, and e are linear sizes (m) ofmovingwin-
dow elements. 1, . . ., 9 are numbers of thewindow nodes
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where z1, . . ., z9 are elevation values in the nodes of a 3 3 3 moving window and w is the cell size (Figure 2a).

Moving the window along a plane square-gridded DEM, one can calculate p and q values (and so G values) for all points

of the DEM, except for boundary rows and columns.

For the case of a spheroidal equal angular grid, p and q are estimated by the following expressions (Florinsky,

1998; Florinsky, 2012, § 4.3):

p5
a2cd d1eð Þ z32z1ð Þ1b a2d21c2e2

� �
z62z4ð Þ1ac2e d1eð Þ z92z7ð Þ

2 a2c2 d1eð Þ21b2 a2d21c2e2ð Þ
h i ; (5)

q5
1

3de d1eð Þ a41b41c4ð Þ3f d2 a41b41b2c2
� �

1c2e2 a22b2
� �� �

z11z3ð Þ

2 d2 a41c41b2c2
� �

2e2 a41c41a2b2
� �� �

z41z6ð Þ
2 e2 b41c41a2b2

� �
2a2d2 b22c2

� �� �
z71z9ð Þ

1d2 b4 z223z5ð Þ1c4 3z22z5ð Þ1 a422b2c2
� �

z22z5ð Þ� �
1e2 a4 z523z8ð Þ1b4 3z52z8ð Þ1 c422a2b2

� �
z52z8ð Þ� �

22 a2d2 b22c2
� �

z81c2e2 a22b2
� �

z2
� �g

(6)

where z1, . . ., z9 are elevation values at the nodes of a 3 3 3 spheroidal equal angular moving window; a, b, c, d, and e

are linear sizes of the elements of the moving window (Figure 2b). Moving the window along a spheroidal equal angu-

lar DEM, one can calculate p and q values (and so G values) for all points of the DEM, except for boundary rows and

columns.

Values of a, b, c, d, and e depend on the latitude. Since geographic coordinates are known for every point of a

spheroidal equal angular grid, so a, b, c, d, and e are easily calculated by formulas for the solution of the inverse geo-

detic problem for short distances (Morozov 1979, pp. 178–179), as described below.

On an ellipsoid of revolution, the distance L (measured in meters) between two points (u1, k1) and (u2, k2), where

u is latitude and k is longitude, can be found by the following equation:

L5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q21P2

p
; (7)

FIGURE 3 Schemes for the D8 flow routing algorithms: (a) Plane square grid; and (b) Spheroidal equal angular grid.P1,
P2, andP3 are cell unit areas at different latitudes
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p

B
(13)

and E0 is the second eccentricity, and A and B are semi-major and semi-minor axes of the ellipsoid of revolution,

respectively, and:

h2
m5E02cos 2um (14)

Nm5
Cffiffiffiffiffiffiffiffiffiffiffiffiffi
11h2

m

p (15)

C5
A2

B
(16)

Mm5
Nm

11h2
m

(17)

Alternative formulas to solve the inverse geodetic problem can be found elsewhere (Sodano, 1965; Vincenty,

1975; Bowring, 1996).

2.2 | Nonlocal morphometric variables

Catchment area is an area of a closed figure formed by a contour segment at a given point of the topographic surface

and two flow lines coming from upslope to the contour segment ends (Speight, 1974).

FIGURE 4 Two areas under study: (a) Mount Elbrus; and (b) The central and western regions of Kenya. Combinations of
elevation and hill-shaded maps (Lambertian models; solar azimuth and solar elevation angles are 3158 and 458, respectively)
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For the case of a plane square grid, one can estimate CA, for example, by the Martz–de Jong method

(Martz & de Jong, 1988). As a D8 algorithm, the Martz–de Jong method uses only one of the eight possible

directions separated by 45� to model a flow from a given point. The flow direction is determined by estimat-

ing a value of G to each neighbor of the point; it corresponds to the direction for which G is the greatest.

CA at a downslope point is determined as the number of upslope points, passed by flows to reach this point,

multiplied by the cell unit area (P) (Figure 3a). It is reasonable to “fill” closed pits or depressions before CA

calculation. The detailed description of the method as well as its Fortran code can be found elsewhere

(Martz & de Jong, 1988).

For the case of a spheroidal equal angular grid, G values are estimated as described above (Section 2.1).

P depends on the latitude (Figure 3b) and can be estimated by the following expression (Morozov, 1979, p.

34).

FIGURE 5 Mount Elbrus, slope gradient: (a) TheGmodel derived by themethod for spheroidal equal angular grids;
(b) TheGmodel derived by themethod for plane square grids: and (c) The difference between twoGmodels
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(18)

where E is the first eccentricity of an ellipsoid of revolution, as reported below.

E5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A22B2

p

A
(19)

Such an approach allows adapting any flow-routing algorithm to the geometry of a spheroidal equal angular grid

(Florinsky, 2012, pp. 60–61).

A wide dynamic range characterizes CA. To avoid loss of information on spatial distribution of CA values in map-

ping, there is a need to apply a logarithmic transform of CA using the following expression:

CA05ln ð11CAÞ: (20)

The term 1 is used to avoid negative values of CA0.

FIGURE 6 Mount Elbrus, catchment area: (a) The CAmodel derived by themethod for spheroidal equal angular grids;
(b) The CAmodel derived by themethod for plane square grids; and (c) The difference between two CAmodels
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2.3 | Combined morphometric variables

Topographic index is usually estimated by the following equation (Beven & Kirkby, 1979):

TI5ln 11CA= 10231tanG
� �� �

: (21)

Due to the term 1 in Eq. (21) TI is a nonnegative variable. The term 1023 is used to avoid division by zero for the

case of horizontal planes. TI is a dimensionless variable; it is used as a measure of the extent of flow accumulation in

TOPMODEL, a conceptual distributed hydrological modeling (Beven & Kirkby, 1979; Quinn, Beven, & Lamb, 1995).

TI derivation includes: (1) calculations of CA andG by related methods described above, and (2) subsequent arithmetic

combination of two digital terrain models (DTMs) obtained. It is obvious that selection of both methods depends strongly

on the DEM grid type. It would be incorrect to mix methods intended for different grid types, for instance, to calculate CA

by a method for square grids, while to compute G by a method for spheroidal equal angular grids (or, vice versa).

FIGURE 7 Mount Elbrus, topographic index: (a) The TImodel derived by themethod for spheroidal equal angular grids;
(b) The TImodel derived by themethod for plane square grids; and (c) The difference between two TImodels
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3 | MATERIALS AND DATA PROCESSING

The study is exemplified by two DEMs with different resolution: (1) a medium-resolution DEM of a relatively small,

high-mountainous area; and (2) a low-resolution DEM of a vast area with diverse topography.

A high-mountainous area is represented by Mount Elbrus in the North Caucasus, Russia (Figure 4a). The area is

located between 43.25� and 43.45� N, and 42.35� and 42.55� E (the area size is 120 3 120). A spheroidal equal angular

DEM was extracted from the quasi-global SRTM1 DEM (Farr et al., 2007; USGS, 2015). The DEM includes 519,841

points (the matrix 721 3 721); the grid spacing is 100.

A vast region with diverse topography is represented by the central and western regions of Kenya, including a portion of

the Great Rift Valley and central Kenyan highlands (Figure 4b). The area is located between 2� S and 2� N, and 35� and 39� E

(the area size is 4� 3 4�). A spheroidal equal angular DEMwas extracted from the global DEM SRTM30_PLUS (Becker et al.,

2009; Sandwell et al., 2008). The DEM includes 230,880 points (the matrix 4803 481); the grid spacing is 3000.

First, to demonstrate possibilities of direct calculation of morphometric variables from spheroidal equal angular

DEMs, digital models of G, CA, and TI were derived from these two DEMs by the methods intended for spheroidal

equal angular grids (described in Section 2). Second, to show computational errors of unreasonable application of algo-

rithms for square grids to spheroidal equal angular DEMs, digital models of G, CA, and TI were derived from these two

DEMs by the methods intended for square grids (described in Section 2) without preliminary re-projection and interpo-

lation of the DEMs.

In both cases, the WGS-84 ellipsoid parameters were used. In calculations with the methods for square grids, an

average of the linear sizes of a cell at the mean latitude of a study area was utilized as a constant grid size. In particular,

FIGURE 8 Kenya, slope gradient: (a) TheGmodel derived by themethod for spheroidal equal angular grids; (b) TheG
model derived by themethod for plane square grids; and (c) The difference between twoGmodels
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for the Elbrusian DEM, the linear sizes of the 100 3 100 cell are 30.86 m 3 22.52 m at the mean latitude, 43.35� N. For

the Kenyan DEM, the linear sizes of the 3000 3 3000 cell are 921.45 m 3 927.66 m at the mean latitude, the equator.

Thus, 26.69 m and 924.55 m were utilized as the constant grid sizes for the Elbrusian and Kenyan DEMs, respectively.

To evaluate computational errors in DTMs derived by the methods for plane square grids, three procedures were

carried out. First, simple differences between DTM pairs were estimated (a DTM derived by a method for plane square

grids was subtracted from a DTM derived by a method for spheroidal equal angular grids). Second, descriptive statistics

were determined for all DTMs. Third, a pairwise comparison of the DTMs calculated by the methods for spheroidal

equal angular grids and plane square grids was performed using the two-sample Kolmogorov–Smirnov (K–S) test

(Daniel, 2000, ch. 8). Samples were extracted from each DTM. For the Elbrusian DTMs, the sample size was

4,900 points (the matrix 70 3 70 with the grid spacing of 1000). For the Kenyan DTMs, the sample size was 2,209

points (the matrix 47 3 47 with the grid spacing of 50).

DTM processing and mapping was conducted with the software LandLord (Florinsky, 2012, pp. 315–316). Statisti-

cal analysis was carried out with the software Statgraphics Plus 3.0 (VC Statistical Graphics Corp. 1994–1997).

4 | RESULTS

Figures 5a, 6a, 7a, 8a, 9a, and 10a demonstrate models of G, CA, and TI derived from the Elbrusian and Kenyan DEMs

by the methods for spheroidal equal angular grids. Figures 5b, 6b, 7b, 8b, 9b, and 10b represent models of G, CA, and

TI derived by the square-grid methods. Tables 1 and 2 summarize statistics for these models.

FIGURE 9 Kenya, catchment area: (a) The CAmodel derived by themethod for spheroidal equal angular grids; (b) The
CAmodel derived by themethod for plane square grids; and (c) The difference between two CAmodels
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Visually, pairs of maps obtained by the methods for different grid types seem to be almost identical (cf. Figures

5a with 5b, 6a with 6b, 8a with 8b, and 9a with 9b). Although we used large sample sizes, descriptive statistics (Tables

1 and 2) do not provide information on differences between the models: presented statistics are very similar. However,

in some cases there are clear differences in the maximal values of G and TI (cf. legends in Figures 5a with 5b, 7a with

7b, and 10a with 10b).

Figures 5c, 6c, 7c, 8c, 9c, and 10c represent differences between pairs of DTMs derived by the methods for differ-

ent grid types. In fact, these differences are computational errors due to unreasonable application of the square-grid

FIGURE 10 Kenya, topographic index: (a) The TImodel derived by themethod for spheroidal equal angular grids;
(b) The TImodel derived by themethod for plane square grids; and (c) The difference between two TImodels

TABLE 1 Statistics for the Elbrusian DTMs derived by the methods for spheroidal equal angular (SEA) and plane
square (PS) grids

Statistics G CA TI

SEA PS SEA PS SEA PS

Minimum 0.424 0.344 0.000 0.000 0.000 0.000

Maximum 66.098 63.723 16.740 16.767 16.669 16.921

Average 22.736 23.055 6.902 6.904 5.061 5.041

Standard deviation 11.382 11.683 3.802 3.818 3.106 3.109

Standardized skewness 8.728 9.106 222.832 222.705 23.881 23.487

Standardized kurtosis 24.916 25.815 23.192 23.490 21.123 20.940
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methods. The errors have both positive and negative values, that is, such use of the square-grid methods leads to both

under- and overestimation of G, CA, and TI values.

It is clearly seen that the amplitudes of computational errors for CA and TI are comparable with the ranges of CA

and TI values (cf. legends in Figs. 6c with 6a, 7c with 7a, 9c with 9a, and 10c with 10a). However, high errors are rela-

tively rare against the background of very small errors (to contrast this, we used a non-uniform colour scale for Figures

6c, 7c, 9c and 10c). Lowest absolute values of CA errors are typical for crests and slopes (dark green lines and light

blue areas, correspondingly), while highest absolute values of CA errors can be found in some thalwegs (yellow and

dark blue lines). This was expected because a gradual accumulation of CA errors occurs from up- to downslopes. For G,

computational errors are less expressed (cf. legends in Figure 5c and 5a), especially for the equatorial zone where the

linear sizes of spheroidal trapezium cells differ slightly from a square (cf. legends in Figure 8c and 8a). High absolute

values of G errors are typical for steep slopes.

According to the K–S test, if Dn>D0.05, one can assume that there is a statistically significant difference between

the two distributions at the 95% confidence level. D0.0550.027 for n54900, and D0.0550.041 for n52209. Based

on the K–S test results (Table 3), CA and TI models calculated by the methods for spheroidal equal angular grids are

statistically different from those calculated by the square-grid methods. At the same time, there are no statistical differ-

ences between G models calculated by methods intended for different grid types. However, although such a statistical

interpretation may be accepted for the equatorial zone where the calculation error is 60.078 (Figure 8c), it is hard to

believe that one would ignore the error in G calculation ranging from 24.28 to 4.98 (Figure 5c).

TABLE 2 Statistics for the Kenyan DTMs derived by the methods for spheroidal equal angular (SEA) and plane
square (PS) grids

Statistics G CA TI

SEA PS SEA PS SEA PS

Minimum 0.000 0.000 0.000 0.000 0.000 0.000

Maximum 23.272 23.343 22.815 22.816 26.620 26.620

Average 1.898 1.899 9.342 9.335 7.671 7.663

Standard deviation 2.457 2.460 7.893 7.886 6.691 6.683

Standardized skewness 63.017 63.104 24.684 24.700 20.864 20.888

Standardized kurtosis 145.872 146.375 216.590 216.598 214.309 214.321

TABLE 3 Statistics for the differences between the pairs of DTMs derived by the methods for spheroidal equal
angular and plane square grids

Statistics The Elbrusian DTMs The Kenyan DTMs

G CA TI G CA TI

Minimum –4.171 –10.728 –9.309 –0.071 –14.353 –11.651

Maximum 4.890 9.252 8.085 0.034 16.603 13.949

Average –0.319 –0.002 0.019 –0.001 0.007 0.007

Standard deviation 2.184 0.627 0.518 0.007 0.781 0.654

K–S test

Dn 0.020 0.202 0.202 0.003 0.406 0.406

K–S 1.000 10.021 10.021 0.105 13.495 13.495

P value 0.271 0.00 0.00 1.00 0.00 0.00
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5 | DISCUSSION

Mathematically, square-grid methods can be considered “an approximation” of spheroidal approaches for the equato-

rial zone only, where the shape of spheroidal trapezoidal cells is relatively close to a square. The farther from the equa-

tor, the stronger the shape of a DEM cell differs from a square. It is obvious that discussed computational errors

increase with increasing distance from the equator. It is also quite evident that the lower the resolution of a spheroidal

equal angular DEM (that is, the larger a DEM cell size), the higher the absolute values of the discussed errors. The

results suggest that higher errors may be obtained for steep slopes in mountainous terrain.

It is impossible to correct results if methods for square-grid DEMs were used to treat a spheroidal equal angular

DEM. The correct way is to use spheroidal approaches. In general, square-grid methods should be applied to treat

square-gridded DEMs of high- and medium-resolution for relatively small areas. Spheroidal approaches should be

employed to treat spheroidal equal-angular DEMs of any resolution describing the globe or vast territories.

This study analyzed one square-grid method for the calculation of local morphometric variables, and one square-

grid algorithm for derivation of nonlocal attributes. At the same time, at a plane square grid, p and q (and so G) can be

also estimated by other finite-difference methods (Zevenbergen & Thorne, 1987; Shary, 1995; Florinsky, 2009; Min�ar

et al., 2013), while CA can be derived by other flow-routing algorithms (O’Callaghan & Mark, 1984; Freeman, 1991;

Quinn et al., 1991; Tarboton, 1997). It is obvious that their application would result in somewhat different models of

G, CA, and TI (and so somewhat different computational errors). However, for the purposes of our study, it does not

matter exactly which square-grid method is used to process a spheroidal equal angular DEM, because any such use is

incorrect.

6 | CONCLUSIONS

The results of the study show that application of square-grid methods to treat spheroidal equal angular DEMs leads to

substantial computational errors in models of local, nonlocal, and combined morphometric variables. The direct use of

square-grid methods at spheroidal grids is absolutely unreasonable because there are methods specially designed for

such situations. This article can help users to distinguish between different types of DEM grids and to choose a correct

geomorphometric approach according to a particular grid type.
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